Maths Paper 1

Mark Scheme

Functional Skills in Mathematics Level 2 - Mark scheme

Paper 1

Task 1 (noncalculator)	Process	Total mark	Mark allocation	Comments	$\begin{aligned} & \text { P or } \\ & \mathbf{U} \end{aligned}$	Subject content
Question 1	Correct order	1	1 mark: 3.02, 3.2, 3.27, 3.702, 3.72	Do not accept largest to smallest	U	9
Question 2	Correct division	1	1 mark: $12028 \div 8=1503.5$		U	2
Question 3	Convert fractions to have the same denominator Fractions correctly subtracted	2	1 mark: $\frac{5}{7}-\frac{1}{3}=\frac{15}{21}-\frac{7}{21}$		U	7
			1 mark: $\frac{15}{21}-\frac{7}{21}=\frac{8}{21}$	Accept equivalent fractions e.g. $\frac{16}{42}$	U	7
Question 4	List in order of size Correct median	2	$\begin{aligned} & 1 \text { mark: Correct order i.e.: } \\ & 11,13,14,14,17,18,19,23,25,27 \end{aligned}$	May be implied if 17.5 seen	U	23
			1 mark: $(17+18) \div 2=17.5$ (pages)	Units not required	U	23
Question 5	Ratio of the cost of pages Finding 1 part of the ratio Total number of pages	3	1 mark: Ratio of the cost of black and white pages in pence $\text { i.e. } 4 \times 10 \text { p }: 1 \times 15 p=40 p: 15 p$		P	11
			1 mark: Finding the amount of pages for 1 part i.e. $550 \div 55=10$ (pages)		P	11
			1 mark: Total number of pages i.e. $5 \times 10=50$ (pages)	Units not required	P	11
Question 6	Calculate hours for 1 worker Calculate hours for 4 workers Amount paid for 6 workers and 4 workers Difference between amounts paid	4	1 mark: $6 \times 16=96$ hours for 1 worker	Allow alternate methods	P	11
			1 mark: $96 \div 4=24$ hours for 4 workers	Allow alternate methods	P	11
			$\begin{aligned} & 1 \text { mark: } 16 \times 10.50=(£) 168 \text { and } \\ & 24 \times 10.50=(£) 252 \end{aligned}$	Allow method of finding difference in hours first	P	2
			1 mark: $252-168=(£) 84$	Allow FT for their previous calculations	P	2
Question 7	Number of students with one sibling \div Total number of students Simplifying fraction	2	1 mark: $\frac{12}{4+12+8+3+1+2}=\frac{12}{30}$		P	27
			1 mark: $\frac{12}{30}=\frac{2}{5}$	Only accept $\frac{2}{5}$ for 2 marks	P	27

Task 2	Process	Total mark	Mark allocation	Comments	$\begin{aligned} & \text { P or } \\ & \mathrm{U} \end{aligned}$	Subject content
Question 8	Finding the radius	4	1 mark: $r=12 \div 2=6$ (inches)	May be implied if 6 seen	P	16
	Calculating the area Area of individual slice Correct units		$\begin{aligned} & 1 \text { mark: Area }=3.14 \times 6^{2}= \\ & 113.04 \text { (inches }^{2} \text {) } \end{aligned}$		P	16
			1 mark: $113.04 \div 8=14.13$		P	16
			1 mark: inches ${ }^{2}$	Units required for full marks	P	16
Question 9	Find the midpoints Sum of midpoints \times frequencies Divide by total number of workers	3	1 mark: 5.5,15.5 and 25.5		P	24
			$\begin{aligned} & 1 \text { mark: }(5.5 \times 12)+(15.5 \times 14)+ \\ & (25.5 \times 9)=512.5 \end{aligned}$		P	24
			1 mark: $512.5 \div 35=14.642 \ldots=15$ (miles)	Units not required	P	24
Question 10	Plot coordinate on grid	1	1 mark: Point plotted correctly on graph	See figure 1	U	19
Question 11	Calculate the decimal	2	1 mark: Correct calculation, i.e. $(133 \div 380=0.35)$ converted to $\frac{35}{100}$		U	8
	Convert to fraction in simplest form		$1 \text { mark: } \frac{7}{20}$		U	8
Question 12	Start process to find cost per litre for one person	5	1 mark: Start of correct process. i.e. $\begin{aligned} & (4 \times 1)+(5 \times 0.5)+(9 \times 0.75) \\ & =13.25 \text { litres } \end{aligned}$ or $(8 \times 1)+(10 \times 0.5)=13$ litres or $(9 \times 1)+(9 \times 0.5)+(5 \times 0.75)=$ 17.25 litres		P	15
	Finding price per litre for Jack		$1 \text { mark: } \frac{8.96}{13.25}=£ 0.676 \text { per litre }$	Allow FT for their cost	P	15
	Finding price per litre for Sophie		1 mark: $\frac{8.92}{13}=£ 0.686$ per litre	Allow FT for their cost	P	15
	Finding price per litre for Kabira		1 mark: $\frac{11.77}{17.25}=£ 0.682$ per litre	Allow FT for their cost	P	15
	Stating who got the cheapest water per litre		1 mark: Jack bought the cheapest water per litre.		P	15

Task 3	Process	Total mark	Mark allocation	Comments	$\begin{aligned} & \mathrm{P} \text { or } \\ & \mathrm{U} \end{aligned}$	Subject content
Question 13	Finding the radius of the sphere Calculating the volume of the sphere	4	1 mark: $r=\frac{d}{2}=\frac{8}{2}=4(\mathrm{~cm})$	May be implied if 4 seen	P	17
			1 mark: Volume of the sphere, i.e. $\begin{aligned} & \text { Volume }=\frac{4}{3} \times 3.14 \times 4^{3} \\ & =267.9466667\left(\mathrm{~cm}^{3}\right) \end{aligned}$		P	17
	Correct density formula Calculating the mass of the paperweight		$1 \text { mark: Denisty }=\frac{\text { Mass }}{\text { Volume }}$		P	15
			$\begin{aligned} & 1 \text { mark: Mass }=8.23 \times 267.9466667= \\ & 2205 \mathrm{~g} \end{aligned}$	Answer to nearest whole number Allow FT from their rounded figures Units required	P	15
Question 14	Correct plan drawn	1	1 mark: Correct plan, i.e.	See figure 2	U	21
Question 15	Calculate population after 1 year Calculate population after 2 years Population of children	3	1 mark: Year 1: $120000 \times 1.05=126000$	May be implied if 126000 seen	P	6
			1 mark: Year 2: $126000 \times 1.05=132300$	May be implied if 132300 seen Allow FT for their figure for population after 1 year	P	6
			1 mark: $\frac{1}{3} \times 132300=44100$		P	6
Question 16	Calculate perimeter Convert to inches.	2	$\begin{aligned} & 1 \text { mark: Perimeter }=5.6+5.6+11.5= \\ & 22.7 \mathrm{~cm} \end{aligned}$	May be implied if 22.7 seen	U	16
			1 mark: $22.7 \times 0.394=8.9438$ inches	Accept correctly rounded values, i.e. 8.9, 8.94, 8.944 Allow FT for their perimeter Units required	U	14
Question 17	Area of wall in centimetres	5	1 mark: $4 \mathrm{~m}^{2}=40000 \mathrm{~cm}^{2}$	May be implied if $40000 \mathrm{~cm}^{2}$ seen	P	14
	Area of a single tile and box of tiles		$\begin{aligned} & 1 \text { mark: } 10 \times 20=200 \mathrm{~cm}^{2} \text { and } 0.32 \mathrm{~m}^{2}= \\ & 3200 \mathrm{~cm}^{2} \end{aligned}$	May be implied if $200 \mathrm{~cm}^{2}$ and $3200 \mathrm{~cm}^{2}$ seen	P	16
	Process to find amount of single tiles or full boxes needed		1 mark: $\frac{40000}{200}=200$ single tiles or $\frac{40000}{3200}=12.5$ boxes $=13$ full boxes	Allow FT for their figures for Area	P	2
	Cost of buying single tiles or cost of buying boxes of tiles		$\begin{aligned} & 1 \text { mark: } 200 \times 0.49=(£) 98 \\ & \text { or } 13 \times 7.99=(£) 103.87 \end{aligned}$	Allow FT for their figures for single tiles / full boxes needed	P	13
	Cheapest option chosen		1 mark: Single tiles are better value	£98 and $£ 103.87$ must be seen for full marks Allow FT if incorrect costs	P	13

Task 4	Process	Total mark	Mark allocation	Comments	$\begin{aligned} & \text { P or } \\ & \mathbf{U} \end{aligned}$	Subject content
Question 18	Correct correlation described	1	1 mark: Positive correlation	Allow as one increases the other increases, or alternate wording	U	28
Question 19	Calculate mean of both classes Calculate range of both classes Comment on which class performed better and which class was more consistent	4	1 mark: Class 1A: $864 \div 12=72$ Class 1B: $796 \div 12=66.33$		P	25
			1 mark: Class 1A: 91-52=39 Class 1B: $82-52=30$		P	25
			2 marks: Class 1A performed better, as the mean score was greater Class 1B were more consistent, as the range was smaller	Allow converses 1 mark for each statement Allow FT for incorrect mean or range calculations	P	25
Question 20	Substitute original and new personal allowance into formula given Calculate difference between tax	2	$\begin{aligned} & 1 \text { mark: } T=\frac{27500-12570}{5}=(£) 2986 \text { and } \\ & T=\frac{27500-12850}{5}=(£) 2930 \end{aligned}$	Both calculations required	P	3
			1 mark: $2986-2930=(£) 56$		P	3
Question 21	Angles around a point = 360° Correct division	2	1 mark: $x=360 \div 8$		U	22
			1 mark: $x=45^{\circ}$	Units not required	U	22
Question 22	Use map scale to calculate distance between Manchester and Newcastle. Convert to miles	6	1 mark: Distance $=7.5 \times 30.8 \mathrm{~km}=231 \mathrm{~km}$	Allow any valid method to convert distance	P	18
			1 mark: Distance in miles there an back: $=(231 \div 1.6) \times 2=288.75$ miles	Calculation can be done in either order	P	14
	Work out how many gallons of fuel needed Convert to litres		1 mark: $288.75 \div 50.3=5.74$ gallons	Allow FT for their distance in miles	P	10
			1 mark: $5.74 \times 4.5=25.83$ litres	Allow FT for their figure for gallons of fuel needed	P	14
	Calculate litres of fuel bought Compare amount of fuel needed with amount in the car		1 mark: $£ 32.01 \div £ 1.65=19.4$ litres	Accept alternate method of calculating how many gallons was already in the car, i.e. $19.4 \div 5.74$	P	10
			1 mark: Marcus does not have enough fuel - he needs 25.83 litres, but only has $19.4+$ $6=25.4$ litres	Both figures must be seen for final mark Reasoning required Accept sensible alternative methods Allow FT for their calculations	P	10

Figure 1

Figure 2

