PEARSON EDEXCEL FUNCTIONAL SKILLS

MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Marking Guidance for Functional Skills Mathematics Level 2

General

- All learners must receive the same treatment. Examiners must mark the first learner in exactly the same way as they mark the last.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme, the response should be escalated to a senior examiner to review.
- Mark schemes should be applied positively. Learners must be rewarded for what they have shown they can do rather than penalised for omissions.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the learner's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated in the answer box, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
- Working is always expected. For short question where working may not be seen, correct answers may still be awarded full marks. For longer questions, an answer in brackets from the mark scheme seen in the body of the working, implies a correct process and the appropriate marks may be awarded.
- Questions that specifically state that working is required: learners who do not show working will get no marks - full details will be given in the mark scheme for each individual question.

Applying the Mark Scheme

- The mark scheme has a column for Process and a column for Evidence. In most questions the majority of marks are awarded for the process the learner uses to reach an answer. The evidence column shows the most likely examples that will be seen. If the learner gives different evidence valid for the process, examiners should award the mark(s).
- If working is crossed out and still legible, then it should be marked, as long as it has not been replaced by alternative work.
- If there is a choice of methods shown, then mark the working leading to the answer given in the answer box or working box. If there is no definitive answer then marks should be awarded for the 'lowest' scoring method shown.
- A suspected misread, e.g. 528 instead of 523 , may still gain process marks provided the question has not been simplified. Examiners should send any instance of a suspected misread to a senior examiner to review.
- It may be appropriate to ignore subsequent work (isw) when the learner's additional work does not change the meaning of their answer.

PEARSON EDEXCEL FUNCTIONAL SKILLS

MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

- Correct working followed by an incorrect decision may be seen, showing that the learner can calculate but does not understand the functional demand of the question. The mark scheme will make clear how to mark these questions
- Transcription errors occur when the learner presents a correct answer in working, and writes it incorrectly on the answer box e.g. 698 in the body and 689 in the answer box; mark the better answer if clearly only a transcription error. Examiners should send any instance of transcriptions errors to a senior examiner to review.
- Incorrect method if it is clear from the working that the correct answer has been obtained from incorrect working, award 0 marks. Examiners must escalate the response to a senior examiner to review.
- Follow through marks (ft) must only be awarded when explicitly allowed in the mark scheme. Where the process uses the learner's answer from a previous step, this is clearly shown.
- Speech marks are used to show that previously incorrect numerical work is being followed through, for example ' 240 ' means their 240 coming from a correct or set of correct processes.
- When words are used in \{ \} then this value does not need to come from a correct process but should be the value the learner believes to be required. The constraints on this value will be detailed in the mark scheme. For example, $\{$ volume $\}$ means the figure may not come from a correct process but is clearly the value learners believe should be used as the volume.
- Marks can usually be awarded where units are not shown. Where units are required this will be stated. For example, $5(\mathrm{~m})$ indicates that the units do not have to be stated for the mark to be awarded.
- Learners may present their answers or working in many equivalent ways. This is denoted oe in the mark scheme. Repeated addition for multiplication and repeated subtraction for division are common alternative approaches. The mark scheme will specify the minimum required to award these marks.
- A range of answers is often allowed, when a range of answers is given e.g. [12.5, 13] this is the inclusive closed interval.
- Accuracy of figures. Accept an answer which has been rounded or truncated from the correct figure unless other guidance is given. For example, for 12.66 .. accept $12.6,12.7,12.66,12.67$ or any other more accurate figure.
- Probability answers must be given as a fraction, percentage or decimal. If a learner gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths). If a learner gives the answer as a percentage a $\%$ must be used. Incorrect notation should lose the accuracy marks, but be awarded any implied process marks. If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
- Graphs. A linear scale must be linear in the range where data is plotted, and use consistent intervals. The scale may not start at 0 and not all intervals must be labelled. The minimum requirements will be given, but examiners should give credit if a title is given which makes the label obvious.

PEARSON EDEXCEL FUNCTIONAL SKILLS MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Section A (Non-Calculator)

PMAT2/N02	Process	Mark	Mark Grid	Evidence
Question	Orders decimals	1 or	A	$10.91,10.94,11.05,11.12,11.12$
Q1(a)	Accurate figure	2	AB	11.05
Q1(b)	Accurate figure	1	C	11.12
Total marks for question				
	$\mathbf{3}$			

Question	Process	Mark	Mark Grid	Evidence
Q2	Process to square	1	A	e.g. $10 \times 10(=100)$ OR $8 \times 8(=64)$
	Begins to work with formula	1 or	B	$\prime 100^{\prime}-'^{\prime} 64^{\prime}(=36)$ OR $\sqrt{\prime 10 \times 10^{\prime}-' 8 \times 8^{\prime}}$ where 1 of the terms is correct
	Accurate figure	2	BC	6 Accept ± 6

PEARSON EDEXCEL FUNCTIONAL SKILLS
MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Question	Process	Mark	Mark Grid	Evidence
Q3	Process to find a fraction of an amount or fraction over a common denominator	1 or	A	$\begin{aligned} & \frac{1}{3} \times 240(=80) \text { OR } \\ & \frac{1}{8} \times 240(=30) \text { OR } \\ & \frac{8}{24} \text { or } \frac{9}{24} \text { used oe } \end{aligned}$
	Improves solution	2 or	AB	$\begin{aligned} & \frac{3}{8} \times 240(=90) \text { and } \frac{1}{3} \times 240(=80) \text { OR } \\ & 1-\left(\frac{8}{24}+\frac{9}{24}\right)\left(=\frac{7}{24}\right) \text { oe } \end{aligned}$
	Full process to find required figure	3 or	ABC	$\begin{aligned} & 240-‘ 90 \text { - } ‘ 80 \prime(=70) \text { OR } \\ & { }^{\prime} \frac{7}{24} \times 240(=70) \end{aligned}$
	Accurate figure	4	ABCD	70
	Total marks for question	4		

PEARSON EDEXCEL FUNCTIONAL SKILLS

 MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2| Question | Process | Mark | Mark Grid | Evidence |
| :---: | :---: | :---: | :---: | :---: |
| Q4 | Converts units | 1 | A | 4 or 0.6 or 0.5 seen
 May be seen or used in subsequent calculations. |
| | Process to find the area of one face | 1 or | B | $\begin{aligned} & 4^{\prime} \times{ }^{\prime} 0.6 \text { ' }(=2.4) \mathbf{O R} \\ & \left.4^{\prime} \times{ }^{\prime} 0.5 \text { ' }=2\right) \end{aligned}$ |
| | Process to find the area of two different shape faces or adds the area of at least one rectangular face to the area of both triangular faces | 2 or | BC | $\begin{aligned} & { }^{\prime} 4 \times \times{ }^{\prime} 0.6 \text { ' }(=2.4) \text { and }{ }^{\prime} 4 \text { ' } \times{ }^{\prime} 0.5 \text { ' }(=2) \mathbf{O R} \\ & \text { e.g. } 44^{\prime} \times{ }^{\prime} 0.5 \text { ' }+0.12+0.12(=2.24) \end{aligned}$ |
| | Complete process to find total surface area for all 5 faces in consistent units. | 3 | BCD | e.g. ' 2.4 ' + ' 2 ' $+0.12+{ }^{\prime} 2^{\prime}+0.12(=6.64)$ |
| | Process to find amount of paint required for 3 boards or coverage available | 1 or | E | $\begin{aligned} & \text { e.g. \{surface area\} } \times 3(=19.92) \text { OR } \\ & 2 \times 10(=20) \text { OR } \\ & 2 \times 10 \div 3(=6.66 . .) \end{aligned}$ |
| | Valid decision with accurate figures | 2 | EF | Yes AND $19.92\left(\mathrm{~m}^{2}\right)$ and $20\left(\mathrm{~m}^{2}\right)$ OR Yes AND $6.64\left(\mathrm{~m}^{2}\right)$ and 6.66(6..) ($\left.\mathrm{m}^{2}\right)$ |
| | Total marks for question | 6 | | |

PEARSON EDEXCEL FUNCTIONAL SKILLS MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Section B (Calculator)

PMAT2/C02				
Question	Mrocess	Mark	Mark Grid	Evidence
Q1	Begins to work with conversion factor	1 or	A	e.g. $19 \times 2.54(=48.26)$ or $22 \times 2.54(=55.88)$ OR $47.2 \div 2.54(=18.58)$ or $49.4 \div 2.54(=19.4)$
	Process for 2 correct and appropriate conversions Valid decision with accurate figures	2 or	AB	e.g. $19 \times 2.54(=48.26)$ and $22 \times 2.54(=55.88)$ OR $47.2 \div 2.54(=18.58)$ and $49.4 \div 2.54(=19.4)$

fridge	Width cm	Depth cm	Height cm
GAP	48.26	55.88	91.44

fridge	Width inch	Depth inch	Height inch
\mathbf{A}	$18.582 .$.	$17.559 .$.	$33.149 .$.
\mathbf{B}	$19.448 .$.	$17.559 .$.	$33.031 .$.
\mathbf{C}	$18.307 .$.	$17.559 .$.	$37.086 .$.

PEARSON EDEXCEL FUNCTIONAL SKILLS
MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Question	Process	Mark	Mark Grid	Evidence
Q2(a)	Accurate coordinates	1	A	$(1,-1)$
Q2(b)	Accurate coordinates to form parallelogram	1	B	Plots D at $(-3,-4)$ OR $(-1,6)$ or $(5,2)$
Q2(c)	Accurate value	1	C	360

Question	Process	Mark	Mark Grid	Evidence
Q3	Begins process to find the median or mean day rate	1 or	A	$75,84,89,115,120,290,298$ in order OR $(290+75+115+84+120+89+298) \div 7(=153)$
	Arocess to find the median and mean	2	AB	$75,84,89,115,120,290,298$ in order and $(290+75+115+84+120+89+298) \div 7(=153)$
	Accurate figure for median or mean with label or comment median and mean	2	CD	$115($ median $)$ OR $(290+75+115+84+120+89+298) \div 7=153(\mathrm{mean})$ If this mark is awarded, award A e.g. Median 115 AND mean $(75+84+89+115+120+290+$ $298) \div 7=153$ If this is seen, award all marks

PEARSON EDEXCEL FUNCTIONAL SKILLS MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Question	Process	Mark	Mark Grid	Evidence
Q4(a)	Works with percentage	1 or	A	e.g. $27 \div 123 \times 100(=21.95 .$.$) OR$ $24 \div 100 \times 123(=29.52)$ $123 \times 1.24(=152.52)$
	Valid decision with accurate figures	2	AB	e.g. No AND $21(.95 .$.$) or 22(\%) OR$ No AND 29 or 30 (people) OR No AND $152(.5)($ total students $)$
Q4(b)	Valid check by reverse calculation	1	C	Valid check by reverse calculation e.g $21.95 \div 100 \times 123=27$ or $26.99 .$. $22 \div 100=0.22$ with $0.22 \times 100=22$ seen in (a)

PEARSON EDEXCEL FUNCTIONAL SKILLS
MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Question	Process	Mark	Mark Grid	Evidence
Q5(a)	Begins to complete two-way table	1 or	A	$\begin{aligned} & \text { 2 of: } \\ & 62-38(=24) \\ & 400-227(=173) \\ & 21+23(=44) \text { OR } \\ & 21+2(=44) \text { and } 400-198-62-{ }^{\prime} 44{ }^{\prime}(=96) \end{aligned}$
	Improves solution	2 or	AB	
	Fully correct table	3	ABC	Fully correct table. See below.
Q5(b)	Begins to deal with probability	1 or	D	$\begin{aligned} & \frac{a}{400} \text { where } a<400 \text { or } \\ & \frac{23}{b} \text { where } b>23 \end{aligned}$
	Accurate figure	2	DE	$\frac{23}{400} \text { oe }$
	Total marks for question	5		

	shops	free parking	food court	location	total
male	88	24	40	21	173
female	110	38	56	23	227
total	198	62	96	44	400

PEARSON EDEXCEL FUNCTIONAL SKILLS
MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Question	Process	Mark	Mark Grid	Evidence
Q6	Begins process to work with an estimate of the mean	1 or	A	e.g. 3×2 and 8×12 and 13×9 and 18×3 Allow use of 'midpoints' provided they are within the interval including the end points $\mathbf{O R}$ 6 and 96 and 117 and 54 seen (condone 1 error or omission) OR $26 \times 10(=260)$
	Full process to find figures to compare	2 or	AB	e.g. $(3 \times 2+8 \times 12+13 \times 9+18 \times 3) \div(2+12+9+3)(=10.5)$ oe Allow use of 'midpoints' provided they are within the interval including the end points OR $26 \times 10(=260) \text { and ' } 6 \text { ' }+‘ 96 \text { ' }+{ }^{\prime} 117^{\prime}+‘ 54 \text { ' }(=273)$
	Valid decision with accurate figure	3	ABC	e.g. Yes/No AND 10.5 OR No AND 260 and 273
	Total marks for question	3		

number of cars sold each week	frequency	\boldsymbol{x}	$\boldsymbol{f} \boldsymbol{x}$
$1-5$	2	3	6
$6-10$	12	8	96
$11-15$	9	13	117
$16-20$	3	18	54
totals	26	42	273

number of cars sold each week	$f x$ using lower endpoint	$f x$ using upper endpoint
$1-5$	2	10
$6-10$	72	120
$11-15$	99	135
$16-20$	48	60
totals	221	325

PEARSON EDEXCEL FUNCTIONAL SKILLS MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Question	Process	Mark	Mark Grid	Evidence
Q7(a)	Process to calculate volume Accurate figure	1 or 2	A AB	${ }^{\prime} 6 \text { ' } \times{ }^{\prime} 4^{\prime} \times{ }^{\prime} 3^{\prime}(=72)$ May use dimensions clearly labelled on the diagram 72
Q7(b)	Begins to draw the plan of the cuboid Accurate plan	1 or 2	C CD	Draws a rectangle of side length 6 squares or 4 squares Draws a rectangle of side length 6 squares and 4 squares NB Nets or 3D shapes OR rectangles labelled with front or side scores no marks
	Total marks for question	4		

PEARSON EDEXCEL FUNCTIONAL SKILLS MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Question	Process	Mark	Mark Grid	Evidence
Q8(a)	Begins to work with ratio Process to find number of footballs for size 3 and 4 Accurate figures	1 or 2 or 3	A AB ABC	$180 \div(6+2+1)(=20) \mathbf{O R}$ Build up method to at least $60: 20: 10$ ${ }^{\prime} 20^{\prime} \times 6(=120) \text { and ' } 20 \text { ' } \times 2(=40)$ $120 \text { (size 3) AND } 40 \text { (size 4) AND } 20 \text { (size 5) }$
Q8(b)	Begins to work with proportion or uses single packet only with decision and accurate figure Full process to find figures to compare using multiple boxes or uses a single box with 18 packets with decision and accurate figure Valid decision with accurate figures	1 or 2 or 3	D DE DEF	$\begin{aligned} & 23 \div 5(=4.6) \mathbf{O R} \\ & 4 \times 5(=20) \text { oe } \mathbf{O R} \end{aligned}$ 4 boxes stated OR e.g. states 2 boxes and 13 packs or 3 boxes and 8 packs $\mathbf{O R}$ No AND $23 \times 4.49=(\mathfrak{f}) 103.27$ e.g. $4 \times 20.25+3 \times 4.49(=94.47)$ OR $(100-4 \times 20.25) \div(23-4 \times 5)(=6.3 .$.$) OR$ No AND $20.25+18 \times 4.49=(£) 101.07$ e.g. Yes AND (£) 94.47 or ($£$) 96.67 or ($(\mathfrak{f}) 98.87$ OR Yes AND (£) 6(.3..) from full working

PEARSON EDEXCEL FUNCTIONAL SKILLS
MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

Question	Process	Mark	Mark Grid	Evidence
Q9(a)	Begins to work with angles	1 or	A	$180-(63+58)(=59)$ and $180-‘ 59 '(=121)$ OR $63+58(=121)$
	Accurate figure	2	AB	121
Q9(b)	Checks answer by estimation	1	C	e.g. $180-60-60(=60)$ and $180-60=120$ OR $60+60=120$

Question	Process	Mark	Mark Grid	Evidence
Q10	Begins process to work with speed or time	1 or	A	$\begin{array}{\|l} \hline \text { e.g. } 18 \div 24(=0.75) \text { OR } \\ 36 \text { miles in } 48 \text { minutes OR } \\ 24 \div 60(=0.4) \text { OR } \\ 50 \div 60(=0.833 \ldots) \text { OR } \\ 18 \div 50(=0.36) \text { OR } \end{array}$
	Full process to find figures to compare	2 or	AB	$\begin{aligned} & \text { e.g. ‘} 0.75 ’ \times 60(=45) \text { OR } \\ & 18 \div{ }^{\prime} 0.4^{\prime}(=45) \text { OR } \\ & 18 \div 50(=0.36) \text { and } 24 \div 60(=0.4) \mathbf{O R} \\ & 18 \div{ }^{\prime} 0.8333^{\prime}(=21.6) \mathbf{O R} \\ & 50 \times{ }^{‘} 0.4^{\prime}(=20) \end{aligned}$
	Valid decision with accurate figure	3	ABC	e.g. Yes AND 45 OR Yes AND 0.36 and 0.4 OR Yes AND 21.6 (compared with 24) OR Yes AND 20
	Total marks for question	3		

PEARSON EDEXCEL FUNCTIONAL SKILLS

 MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2| Question | Process | Mark | Mark Grid | Evidence |
| :---: | :---: | :---: | :---: | :---: |
| Q11 | Process to find circumference | 1 | A | $\pi \times 25(=78.5398)$
 allow 78.5 to 78.55 to imply this mark |
| | Begins to work with length | 1 or | B | $\begin{aligned} & \text { e.g. } 12 \times 9(=108) \text { OR } \\ & 8 \times ‘ 78.5 ’(=628) \mathbf{O R} \\ & 9 \times 8(=72) \mathbf{O R} \\ & 500 \times 3(=1500) \end{aligned}$ |
| | Develops solutions | 2 or | BC | e.g. '78.5' $+{ }^{\prime} 108^{\prime}(=186.5)$ OR
 ' 108 ' $\times 8$ ($=864$) OR
 $8 \times ' 78.5$ ' $(=628)$ and $12 \times 9(=108)$ OR
 $8 \times ' 78.5$ ' $(=628)$ and $9 \times 8(=72)$ OR
 $500 \times 3(=1500)$ and $8 \times{ }^{\prime} 78.5^{\prime}(=628)$ |
| | Full process to find figures to compare | 3 or | BCD | |
| | Valid decision with accurate figures | 4 | BCDE | e.g. Yes AND $1492(\mathrm{~mm})$ and $1500(\mathrm{~mm})$ OR
 Yes AND $187.5(\mathrm{~mm})$ and $186.5(\mathrm{~mm})$ OR
 Yes AND 2.98 (rolls)
 Yes AND 8(.04..)
 NB allow use of pi in the range 3.14 to 3.142 for accurate figures |
| | Total marks for question | 5 | | |

PEARSON EDEXCEL FUNCTIONAL SKILLS

MATHEMATICS MARK SCHEME - LEVEL 2 PAST PAPER 2

