NCFE Level 1 Functional Skills Qualification in Mathematics (603/5055/6)

Paper number: P001371 Section B: Calculator Test

Assessment window: Monday 7 September 2020 - Friday 11 September 2020
Time allowed: 1 hour 30 minutes

Learner instructions

- Answer all questions.
- Read each question carefully.
- Write your answers in the spaces provided.
- Show your working, as marks may be awarded for working.
- State units in your answers, where appropriate.
- Check your work.

Learner information

- Section B contains Activities 2, 3 and 4.
- The maximum mark for this section is 45.
- The marks available for each question are shown in brackets.

Resources

You will need a:

- pen, with black or blue ink
- pencil and eraser
- 30 cm ruler
- protractor
- calculator.

If extra pages are used, please make sure your name and centre name are on them and they are securely fastened to this booklet.

Please complete the details below clearly and in BLOCK CAPITALS.

Learner name
Centre name

Learner number \square Centre number \square
Do not turn over until the invigilator tells you to do so.

This page is intentionally left blank.

Activity 2: Renovation

2 (a) Andy is renovating his kitchen.
He uses this calculation to work out the estimated cost in pounds:
$\frac{2160 \times 5^{2}}{2 \times 3}$
What is the estimated cost?

2 (b) Andy hires a skip.
The skip is cuboid.
It is 1.25 m wide, 3.6 m long and 1.6 m deep.

What is the volume of the skip in m^{3} ?

2 (c) Andy buys a new kitchen.
The kitchen costs $£ 5000$
Andy gets a 2-year loan to pay for the kitchen.
He pays simple interest on the loan at 5% per year.
How much will he have paid back in total after 2 years?

2 (d) Andy paints a wall in his kitchen.
He rounds all wall dimensions to the nearest whole number then uses the rounded numbers to estimate the area of the wall.

What value should Andy get for the total area of the wall using this method?

2 (e) Andy shops for all of the materials he needs.
The materials cost $£ 85$
This is $\frac{1}{5}$ of Andy's budget.
How much is his total budget?

2 (f) Andy is making a timetable for work to be done on Monday.

Andy will start work at 1 pm
He thinks he will finish by 6.30 pm
Is Andy correct?
Show how you decide.

Activity 3: Going abroad

3 (a) Simon is going to France for 7 days.
He has $£ 700$ saved for this trip.
He plans to spend $\frac{2}{5}$ of it on accommodation, 25% on flights and the rest as spending money.

How much spending money will he have?

3 (b) Simon looks at the weather forecast in Paris.
The table shows a 7-day forecast:

Day	Forecast temperatures in ${ }^{\circ}$ C for Paris
Mon	15
Tue	17
Wed	17
Thu	16
Fri	16
Sat	22
Sun	23

Draw a line graph to represent this data.

Forecast temperatures in ${ }^{\circ} \mathrm{C}$ for Paris

3 (c) The table shows a 7-day forecast:

Day	Forecast temperatures in ${ }^{\circ}$ C for Paris
Mon	15
Tue	17
Wed	17
Thu	16
Fri	16
Sat	22
Sun	23

3 (d) Simon has a luggage allowance of 23 kg
He has already packed 18400 g
How many more $\mathbf{k g}$ can he pack?

3 (e) Simon goes to the airport shop.
He sees these two offers for sunglasses:
Offer 1 Was $£ 40$
Now 15\% off
Offer 2 Was £25
Now 25% off
Which offer saves him the most money?
Show how you decide.

3 (f) Simon waits to get on the plane.
He watches another plane taking off.

What type of angle does the plane take off at?
Tick to show your answer.

Obtuse angle
\square Reflex angle

Acute angle

Right angle

3 (g) On arrival, Simon gets a taxi to his hotel.
The taxi costs $€ 21$
He converts this to $£$ and gets the answer 18.168
What is 18.168 to 2 decimal places?
\square
[Total marks: 15]

Activity 4: Climate change

4 (a) Amena is studying Geography at a college.
She is interested in the effects of climate change.
She reads that the average rainfall in Britain is 1154 mm per year.
What is 1154 in words?

Your answer:

4 (b) The ice sheet in Greenland is 657000 square miles.
Texas is one third of this size.
Calculate one third of 657000

4 (c) $\quad \operatorname{In} 2018$, the average winter temperature in Svalbard was $-4^{\circ} \mathrm{F}$
In 2019, this increased by $9^{\circ} \mathrm{F}$
Amena wants to work out the average winter temperature in 2019 in ${ }^{\circ} \mathrm{C}$

She uses this rule:

| Temperature
 in ${ }^{\circ} \mathrm{F}$ |
| :---: | Subtract $32 \rightarrow$| Multiply by |
| :---: |
| 0.6 |\rightarrow| Temperature |
| :---: |
| in ${ }^{\circ} \mathrm{C}$ |

What was the 2019 average winter temperature in ${ }^{\circ} \mathrm{C}$?

4 (d) Melting ice can cause sea levels to rise.
This table shows the rise in sea levels year by year over 10 years:

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Rise (in cm)	0.92	0.82	0.49	0.911	0.56	0.97	0.88	0.9	0.802	0.8

In which year was the rise in sea level the greatest?

4 (e) Some scientists think that climate change might increase the number of earthquakes.

Amena finds this information about the magnitude of some earthquakes.

Magnitude of earthquakes	Location
8.0	Peru
8.2	Fiji
7.8	Ecuador
8.3	Russia
9.1	Japan

She needs to draw a bar chart.
Draw a bar chart for Amena.

Magnitude of earthquakes

Location

4 (f) Calculate the range of the magnitudes.
\square

4(g) Climate change increases the probability of flooding in some areas.
The probability of Town A being flooded in the next 50 years is $\frac{1}{10}$
The probability of Town B being flooded in the next 50 years is $\frac{1}{5}$

The probability of Town C being flooded in the next 50 years is $\frac{1}{3}$
Which town is the most likely to be flooded in the next 50 years?

4 (h) Mark the probability of Town A being flooded in the next 50 years on the probability scale below.
[1 mark]

0

4 (i) In 2010 scientists said that a 45% reduction of CO_{2} emissions was needed by 2030 to avoid average temperatures rising by more than $1.5^{\circ} \mathrm{C}$

Global CO_{2} emissions were 10 gigatonnes in 2010

What must the CO_{2} emissions be by 2030 to avoid the temperature rising by more than $1.5^{\circ} \mathrm{C}$?

[Total marks: 15]

This is the end of the external assessment.

This page is intentionally left blank.

