

13	$2 x=180-78$				[1] Using angles in a triangle rule
	$x=51^{\circ}$				[1]
14	$1.73 \times 7=12.11$				[1] Method to find their total height
	$1.74 \times 8=13.92$				[1] Method to find total height of all 8
	1.81 m				[1] Method to find difference in total heights
15	$30+(15 \times 7)=€ 135$				[1]
	$0.6 \times 135=€ 81$				[1] Method to find cost of car hire
	$£ 1 \approx € 1.20$				[1] Correctly finds conversion rate
	$81 \div 1.20=£ 67.50$				[1] Converts euros to pounds
	£2.50				[1]
16	$180 \div 0.8$				[1]
	€225				[1]
17		Year 9	Year 10	Total	[1] For 84 and 62 [1] For 181 and 159 [1] For 355
	Boys	62	97	159	
	Girls	112	84	196	
	Total	174	181	355	
	$\frac{159}{355}$				[1]
18	$\begin{gathered} 1 \text { part }=510 \div 3=170 \mathrm{~g} \\ 5 \times 170=850 \mathrm{~g} \end{gathered}$				[1] Method to find amount of fudge
	$(850 \times 0.9) \div 100=7.65$				[1]
	7				[1]

19	Median, 2018: $\frac{29+30}{2}=29.5 \mathrm{~kg}$	[2]
	$29.5 \times 2.20=64.9 \mathrm{lbs}$	[1] Method to convert to lbs
	$\frac{68-64.9}{64.9} \times 100$	[1] Correct percentage change calculation
	4.78\% increase	[1]
20	$5 \times 3.14 \times 2^{2}$	[1] Method to find volume of cylinder
	$62.8 \mathrm{~cm}^{3}$	[1]
	$350 \div 62.8$	[1] Method to divide mass by volume
	$5.57 \mathrm{~g} / \mathrm{cm}^{3}$	[1]
21	$12+10+122=144 \mathrm{mins}$	[1] Method to find total time spent travelling
	$144 \div 60=2.4$ hours	[1] Convert time to hours
	$197 \div 2.4$	[1] Divides distance by time
	82.08 mph	[1]
22	Offer 1: $(1.80 \times 0.9) \div 2=£ 0.81 / \mathrm{litre}$	[1]
	Offer 2: $(2.20 \times 0.5) \div(0.330 \times 4)=£ 0.83 /$ litre	[1]
	Offer 3: $(0.6 \times 0.75) \div 0.5=£ 0.90 / \mathrm{litre}$	[1]
	Offer 1 is the best value for money	[1]

