https://passfunctionalskills.co.uk/
Book Functional skills Exam
AQA

PASS
FUNCTIONAL SKILLS
Please write clearly in block capitals.
Centre number
Surname
Forename(s)
Candidate signature

Functional Skills Certificate FUNCTIONAL MATHEMATICS

Level 2

Monday 16 January 2017 Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments
- a copy of the data book (examination) (enclosed).

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- State the units of your answer where appropriate.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
- Evidence of checking is specifically assessed in Questions 2(a) and 4(e).

These questions are indicated with a \dagger.

Advlce

- In all calculations, show clearly how you work out your answer.

FUNCTIONAL SKILLS ONLINE COURSES

(v) Explainer videos on every topic
(v) Quick-fire style mutiple choice questions
© Test your knowledge with exam-style questions
(v) Written solutions for all questions

- Your answers are analysed to determine your Current Level
- Suggested courses for you to enrol on based on your calculated level
- Always know the level you are currently working at
v Determine when you are ready to sit your exam

© See your progress through as you progress through each topic area
(v) Get your average scores for practice questions, topic tests and mock exams
(V) View all practice question, topic test and mock exam attempts over time
(View historical attempts to analyse your progress over time

Answer all questions in the spaces provided.

Chris makes batches of cookie dough.
Here are the ingredients he needs to make one batch.

One batch of cookie dough
200 g margarine
250 g flour
100 g sugar
2 eggs
1 teaspoon baking powder
One batch makes exactly
16 large cookies
or
24 small cookies.

1 (a) On Monday, Chris uses 400 g of margarine to make cookie dough. He uses all of the dough to make small cookies.

How many can he make?
Circle your answer.

242
(48)

1 (b) On Tuesday, Chris makes one batch of cookie dough. He uses some of the dough to make 2 large cookies.

He says,
"I will use the rest of the dough to make some small cookies."
How many small cookies can he make?

$\frac{24}{16} \times 2=3$ small cookies.
Therefore, the remaining mix can
create $24-3=21$ small cookies.

Question 1 continues on the next page

1 (c) On Wednesday, Chris makes cookies using 10 batches of dough. He will sell all the cookies in bags at these prices.

Bag of 4 large cookies $£ 1.35$
Bag of 8 small cookies $£ 1.75$

Here are his costs.

Total cost of ingredients $£ 19.50$

He is going to make
only large cookies
or
only small cookies.

He says,
"If I make and sell only large cookies my total profit will be $£ 1.30$ more than if I make and sell only small cookies."

Is he correct?
You must show your working.

Total number of cookies:

$$
S_{\text {mall }}=10 \times 24=240, \text { Large }=10 \times 16=160
$$

Number of bags:

$$
S_{\text {mall }}=\frac{240}{8}=30, \text { Large }=\frac{160}{4}=40
$$

Total

$$
\text { Small }=30 \times f 1.35=f 52.5 \text {, Large }=40 \times f 1.35=f 54 .
$$

Total spent on bags:

$$
S_{\text {mall }}=£ 0.02 \times 30=£ 0.60, \text { Large }=£ 0.02 \times 40= \pm 0.80
$$

Total profit:

$$
\begin{array}{r}
S_{\text {mall }}=f 52.50-f 0.60=E 51.90, \text { Large }=f 54-f 0.80= \\
E 53.20
\end{array}
$$

$f 53.20-E S 1.90=f 1.30$, so Chris is correct.

PassFunctionalSkills.co.uk

2 Cars
There is a data sheet for Cars.
Alfie is thinking about buying a new car.

Alfie
$\dagger 2$ (a) Alfie plans to
buy a new car after 1 April 2017
keep the car for 5 years.
Work out the total vehicle tax he will pay if he buys a Toyota Aygo.
$95 \mathrm{~g} / \mathrm{hm} \Rightarrow \quad \mathrm{E} 120$ in $Y 1, \quad \mathrm{E} 140$ after $Y 1$.

$$
\Rightarrow \quad f 120+(4 \times f 140)=f 680 .
$$

Check your answer.
Show how you have done your check.

$$
\begin{aligned}
& £ 680-£ 120=£ 560 . \\
& £ 560 \div 4=£ 140 .
\end{aligned}
$$

Alfie will use his new car for work.
2 (b) He makes these notes.
I drive a total of 62 miles each day for work.
I work for 5 days each week.
I work for 46 weeks each year.
Diesel costs $£ 4.96$ per gallon.
Petrol costs $£ 4.87$ per gallon.
My actual fuel efficiency will be 20% lower than the official value.
He says,
"I will spend at least $£ 1300$ a year on fuel for work if I buy a Toyota Ago."
Is he correct?
You must show your working.

Actual fuel efficiency: $65.7 \times 0.2=13.14$

$$
\Rightarrow 65.7-13.14=52.56 \mathrm{mpg}
$$

Total miles per year: $62 \times 5 \times 46=14260 \mathrm{mi}$.

Gallons used per year: $\frac{14260}{52.56}=271.31$ gal.

$$
271.31 \text { gal } \times \pm 4.87 \text { pergal }=f 1321.27
$$

So, Allie is correct.

2 (c) Alfie buys a car.
For 8 days, he records the time he takes for his journey to work by car
and
his journey home by car.

	Journey to work by car (minutes)
Day 1	42
Journey home by car (minutes)	
Day 2	46
Day 3	38
Day 4	42
Day 5	46
Day 6	52
Day 7	48
Day 8	39

He knows that his total journey time to work and home by train each day would be $1 \frac{1}{2}$ hours.

Alfie has 120 working days left in the year.
He says,
"I estimate that on 85 days out of 120 the total journey time would be less by car than by train."

Based on these 8 days, is his estimate correct?
You must show your working.
[5 marks]
$D 1: 89, D 2: 98, \quad 03: 77, \quad D 4: 86, D 5=95,06: 110,07: 88,08: 75$, Less More Less Less More Mare less less $5 / 8$ days took under $1 \frac{1}{2}$ hars. $5 / 8 \times 120=75$ out of 120 days.

His estimate is not correct.

3 Hotel

3 (a) The hotel has 128 standard rooms and 40 deluxe rooms.
Each room is cleaned the day after it has been used.
To clean a room is
25 minutes work for a standard room
30 minutes work for a deluxe room.
Each cleaner
starts work at 8.30 am and finishes work at 2.00 pm has two 20-minute breaks.

On Tuesday, all the rooms are used.
How many cleaners are needed on Wednesday?
You must show your working.
[6 marks]

$$
\begin{aligned}
& 128 \times 25=3200 \text { mins to clean all standard rooms. } \\
& 40 \times 30=1200 \text { mins to clean all deluxe rooms. } \\
& \Rightarrow 3200+1200=4400 \text { ming total. } \\
& 8: 30 \text { am to } 2: 00 \text { pm is } 330 \text { mins. } \\
& 330-(2 \times 20)=290 \text { ming from each cleaner. } \\
& \begin{aligned}
\frac{4400}{290} & =15.17 \\
& \Rightarrow 16 \text { cleaners are needed. }
\end{aligned}
\end{aligned}
$$

Each day, the cleaners replace used milk cartons.

3 (b) The table shows the number of milk cartons put in 50 rooms yesterday.

Number of milk cartons	Number of rooms
4	18
3	8
2	11
1	9
0	4

Show that 2.54 was the mean number of milk cartons put in the 50 rooms.

$$
\begin{aligned}
& (4 \times 18)+(3 \times 8)+(2 \times 11)+(1 \times 9)=12 \\
& 18+8+11+9+4=50 \text { rooms. } \\
& \frac{127}{50}=2.54 \text { cartons per room. }
\end{aligned}
$$

3 (c) Kim estimates the cost of the milk cartons she needs next year.
She makes these notes.

365 days in a year
75% of the 168 rooms will be used each day
An average of 2.54 cartons per day for each room used
A box of 240 cartons costs $£ 12.60$

Kim says,
"The cost will be less than $£ 6000$ "
Is she correct?
You must show your working.
$0.75 \times 168=126$ rooms per day
$\Rightarrow 126 \times 2.54=320.04$ milk cartons per day.
\qquad
$320.04 \times 365=116814.6$ cartons per year.
$\frac{116814.6}{240}=486.7275$ boxes per year.
$486.7275 \times f 12.60= \pm 6132.7665$ per year.

No, she is not correct.

4 Transporting hamsters
There is a data sheet for Transporting hamsters.
Ola makes cuboid boxes for transporting hamsters.
She is making a box to transport one 4 -week-old Syrian hamster.
She wants
the width of the box to be 5 cm
the floor area to be no more than $60 \mathrm{~cm}^{2}$
4 (a) Ola draws this sketch of the floor of the box.

Write a suitable measurement for the length.

4 (b) Complete the sketch of the net of the box on the opposite page. Include the measurements of all edges.
Do not include windows.

Not drawn accurately

Ola has made a different box.
4 (c) One side of this box has
an area of $112 \mathrm{~cm}^{2}$
a 6 cm by 4 cm rectangular window.
The area of the window must be between 16% and 25% of the area of the side.
Is the area of the window suitable?
You must show your working.
[4 marks]
Area of window: $6 \times 4=24 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
\frac{24}{112} & =0.214 \\
& \Rightarrow \quad 21.4 \%
\end{aligned}
$$

Yes, this window is suitable.

4 (d) The temperature in the box must be between $46^{\circ} \mathrm{F}$ and $85^{\circ} \mathrm{F}$
Ola's thermometer only measures in degrees Celsius.
Work out the two temperatures in degrees Celsius to the nearest whole number.
[3 marks]

$$
\begin{aligned}
& \frac{5}{9}\left(46^{\circ} \mathrm{F}-32\right)=\frac{5}{9} \times 14=7.7^{\circ} \mathrm{C} . \approx 8^{\circ} \mathrm{C} \\
& \frac{5}{9}\left(85^{\circ} \mathrm{F}-32\right)=29.4{ }^{\circ} \mathrm{C} \approx 29^{\circ} \mathrm{C}
\end{aligned}
$$

Temperature must be between

$$
8^{\circ} \mathrm{C} \text { and } 29^{\circ} \mathrm{C}
$$

Ola makes a box with a floor area of $2000 \mathrm{~cm}^{2}$
The box is tall enough to transport Syrian hamsters or Dwarf hamsters.
$\dagger 4$ (e) Ola could transport 6-week-old Syrian hamsters in this box.
Work out the maximum number she could transport.

$$
\frac{2000}{71}=28.17 \Rightarrow 28 \text { Syrian hamsters. }
$$

Check your answer.
Show how you have done your check.

$$
\begin{aligned}
& 28 \times 71=1988<2000 \\
& 29 \times 71=2059>2000
\end{aligned}
$$

28 is the maximum.

4 (f) Instead, Ola could transport 6-week-old Dwarf hamsters in the box.
How many more Dwarf hamsters than Syrian hamsters could she transport?

$$
\frac{2000}{48}=41.6 \Rightarrow 41 \text { Dwarf hamsters }
$$

$$
41-28=13
$$

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
 ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate bookjet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free downioad from www. aqa.org. uk after the ive examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copynight-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA. Stag Hill House Guildford, GU2 7XJ.

[^0]

Functional Skills Maths Level 2 Practice Papers

Functional Skills Maths
Level 2 Revision Cards

Functional Skills English Level 2 Practice Papers \& Revision Cards

Functional Skills Maths
Level 2 Pocket Revision Guide

[^0]: Copyright © 2017 AQA and its licensors. All rights reserved.

