NCFE Level 1 Functional Skills Qualification in Mathematics (603/5055/6)

Paper number: SAM Section A: Non-calculator Test

Time allowed: 30 minutes

Learner instructions

- Answer all questions.
- Read each question carefully.
- Write your answers in the spaces provided.
- Show your working, as marks may be awarded for working.
- State units in your answers, where appropriate.
- Check your work.

Learner information

- Section A contains Activity 1 only.
- The maximum mark for this section is 15.
- The marks available for each question are shown in brackets.

Resources

You will need a:

- pen, with black or blue ink
- pencil and eraser

To be completed by the examiner		Mark	
A	Activity 1	$/ 15$	
B	Activity 2	$/ 15$	
	Activity 3	$/ 15$	
Activity 4	$/ 15$		
	TOTAL MARK		$/ 60$

- 30 cm ruler
- protractor.

If extra pages are used, please make sure your name and centre name are on them and they are securely fastened to this booklet.

Please complete the details below clearly and in BLOCK CAPITALS.

Learner name
Centre name
\square Centre number \square
Do not turn over until the invigilator tells you to do so.

This page is intentionally blank.

Activity 1: Driving test

1 (a) Sam wants to get a driving licence.
He reads that, in the UK, about three-quarters of a million new drivers get a licence each year.

Write 'three-quarters of a million' as a number.

1 (b) Sam must pass the theory test before he can take the driving test.
To pass, he needs 43 out of 50 marks on the first part of the theory test.
Calculate 43 out of 50 as a percentage.

Please turn over

1 (c) At 10 miles per hour, the calculation for stopping distance in feet is $10+0.05 \times 10^{2}$ To work this out Sam does:

$$
\begin{aligned}
10+0.05= & 10.05 \\
10.05 \times 10^{2} & =10.05 \times 100 \\
& =1005
\end{aligned}
$$

i. Explain where Sam has gone wrong.
ii. Calculate the correct stopping distance at 10 miles per hour.

1 (d) This is a formula for calculating braking distance:

Braking distance in feet $=0.05 \times(\text { speed in } \mathrm{mph})^{2}$

At 25 mph the braking distance is 31.25 feet.
A driver accelerates from 25 mph to 60 mph .
What is the increase in braking distance?

1 (e) Sam is 17 years old.
He decides to book 30 hours of lessons with the Accelerate School of Motoring.

PRICES

- Option 1 - Single lessons

1 hour lesson for $£ 21.65$ each Driving Test not included

BUY NOW 㻃

- Option 2 - 5 day course

30 hours of lessons for $£ 710$ Including Driving Test

Calculate 15% of $£ 710$

1 (f) The driving test costs $£ 62$
How much money will Sam save by booking Option 2 instead of Option 1?

[Total marks: 15]

This is the end of Section A.

$$
5\left(x x^{(0, ~}\right.
$$

