Functional Skills Certificate FUNCTIONAL MATHEMATICS 4367

Level 1
Mark scheme
March 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper.
Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

Examinations are marked to award positive achievement.
Marks are awarded for demonstrating the following interrelated process skills.
Representing Selecting the mathematics and information to model a situation.
R. 1 Candidates recognise that a situation has aspects that can be represented using mathematics.
R. 2 Candidates make an initial model of a situation using suitable forms of representation.
R. 3 Candidates decide on the methods, operations and tools, including ICT, to use in a situation.
R. 4 Candidates select the mathematical information to use.

Analysing Processing and using mathematics.
A. $1 \quad$ Candidates use appropriate mathematical procedures.
A. 2 Candidates examine patterns and relationships.
A. 3 Candidates change values and assumptions or adjust relationships to see the effects on answers in models.
A. $4 \quad$ Candidates find results and solutions.

Interpreting Interpreting and communicating the results of the analysis.
I.1 Candidates interpret results and solutions.
I. 2 Candidates draw conclusions in light of situations.
I. 3 Candidates consider the appropriateness and accuracy of results and conclusions.
I.4 Candidates choose appropriate language and forms of presentation to communicate results and solutions.

In particular, individual marks are mapped onto the following skills standards.
Representing Making sense of the situations and representing them.
A learner can:
Ra Understand routine and non-routine problems in familiar and unfamiliar contexts and situations.

Rb Identify the situation or problems and identify the mathematical methods needed to solve them.

Rc Choose from a range of mathematics to find solutions.
Analysing Processing and using the mathematics.
A learner can:
Aa Apply a range of mathematics to find solutions.

Ab Use appropriate checking procedures and evaluate their effectiveness at each stage.

Interpreting Interpreting and communicating the results of the analysis.
A learner can:
Ia Interpret and communicate solutions to multistage practical problems in familiar and unfamiliar contexts and situations.
lb Draw conclusions and provide mathematical justifications.

To facilitate marking, the following categories are used:
M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

Question	Answer	Mark	Comments
1(a)	16-200-4500	M1	
		Rc	
	11700	A1	
		Aa	
Check	reverse or alt method eg their $11700+4500=16200$	$\begin{aligned} & \text { B1ft } \\ & A b \end{aligned}$	
	Additional Guidance		
	$4500+11700=16200$ with $16200-4500$ not seen in check M1A0		
1(b)	288	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Rb} \end{aligned}$	must be the only repayment value selected implied by 13824 or 3824
	their 288×48 or 13824	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	their 288 can be any value from the table
	3824	A1	
		Aa	
	Additional Guidance		
	Using an incorrect value from the table can score B0M1A0 only		
	If working lines are blank check table for 288 indicated which can score B1		

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

1(d)	Alternative method 1		
	$160 \div 40$ or 4	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{R} \end{aligned}$	allow embedded
	$1.30+$ their $4+45 \mathrm{mins}$ or $1.5+$ their $4+0.75$ or 6 - their 4-45 mins	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	their 4 cannot be 160 or 40
	6.15(pm) and No or 1.15(pm) and No	$\begin{gathered} \text { A2 } \\ I, I \end{gathered}$	A1 6.15(pm) or 1.15(pm) or A1ft correct conclusion for their value if at least one method mark scored and addition of times seen
	Alternative method 2		
	$160 \div 40$ or 4	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	
	```\(1.30+\) their 4 or 5.30 and 6 - their 5.30 or \(6(\mathrm{pm})-1.30\) or 4 h 30 and their \(4+45\) mins or 4 h 45```	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	30 (mins) and No   or   4h 30 and 4 h 45 and No or   4.5 and 4.75 and No	$\begin{gathered} \text { A2 } \\ I, I \end{gathered}$	A1 30 (mins)   or   A1 4h 30 and 4h 45   or   A1 4.5 and 4.75   or   A1ft correct conclusion for their value if 2 nd method mark scored


$\begin{gathered} 1(\mathrm{~d}) \\ \text { cont'd } \end{gathered}$	Alternative method 3		
	uses build up method adds on 4 lots of one hour with 4 lots of 40 miles +45 minutes	$\begin{gathered} \mathrm{M} 2 \\ \mathrm{Rc}, \mathrm{Aa} \end{gathered}$	eg 1.30 to 2.30 is 40 miles,   to $3.30 \rightarrow 80$ miles   Break 3.30 to 4.15   to $5.15 \rightarrow 120$ miles   to $6.15 \rightarrow 160$ miles   M1 for adding on the four separate hours and 4 lots of 40 miles without including a break
	6.15(pm) and No or   1.15(pm) and No	A2 I,	A1 6.15(pm) or 1.15(pm)   or   A1 ft correct conclusion for their value if at least one method mark scored
	Additional Guidance		
	Omitting the 45 minutes can score maximum 2 marks eg $160 \div 40=4$   $1.30+4=5.30$ Yes M1MOAOA1ft		
	Allow 18.15 for 6.15		
	Allow equivalent final answers such as Quarter past 6 and no No they will be 15 mins late		
	Subtracting 45 minutes, leading to answer of 4.45 and Yes scores M1M0A0A1ft		


$\mathbf{Q}$	Answer	Marks	Comments


1(e)	Alternative Method 1		
	$27+2-9$ or 20	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their $20 \times 7$ or 140	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	140 implies M2
	$\begin{aligned} & 68+35+\text { their } 140 \\ & \text { or } \\ & 250-(68+35+\text { their } 140) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	243 and Yes or 7 and Yes	$\begin{aligned} & \text { A2 } \\ & I, I \end{aligned}$	A1 243 or 7   or   A1ft correct conclusion for their value with two method marks scored
	Alternative Method 2		
	$\begin{aligned} & 7 \times 27 \text { or } 189 \\ & \text { or } \\ & 7 \times 2 \text { or } 14 \\ & \text { or } \\ & 7 \times 29 \text { or } 203 \\ & \text { or } \\ & 7 \times 9 \text { or } 63 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	award M3 for $68+35+189+14-63$   or $306-63$
	their 189 + their 14 - their 63 or their 203 - their 63 or 140	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	
	$68+35+\text { their } 140$   or $250-(68+35+\text { their } 140)$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	243 and Yes or 7 and Yes	$\begin{aligned} & \text { A2 } \\ & I, I \end{aligned}$	A1 243 or 7   or A1ft correct conclusion for their value with two method marks scored


$\begin{gathered} 1(\mathrm{e}) \\ \text { cont'd } \end{gathered}$	Alternative Method 3		
	27-9 or 18	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Ra} \end{aligned}$	
	their $18 \times 7$ or 126 or $2 \times 7$ or 14	$\begin{aligned} & \mathrm{M} 1 \\ & R C \end{aligned}$	
	$68+35+$ their $126+$ their 14 or $250-(68+35+\text { their } 126+\text { their } 14)$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	243 and Yes   or   7 and Yes	$\begin{aligned} & \text { A2 } \\ & I, I \end{aligned}$	A1 243 or 7   or   A1ft correct conclusion for their value with two method marks scored
	Alternative Method 4		
	$7 \times 27 \text { or } 189$   or $7 \times 2 \text { or } 14$   or $7 \times 29 \text { or } 203$   or $7 \times 9 \text { or } 63$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their $189+$ their $14+68+35$ or 306	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	306 implies M2
	their 306 - their 63	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	243 and Yes	$\begin{aligned} & \text { A2 } \\ & I, I \end{aligned}$	A1 243   or A1ft correct conclusion for their value with two method marks scored

Additional Guidance follows on the next page

1(e)	Additional Guidance	
	Examples   1) $\begin{aligned} 27 \times 7 & =189 \\ 2 \times 7 & =14 \\ 9 \times 7 & =63 \\ 189 & +14+68-63=208 \text { and Yes M1M1M0A0A1ft (Alt 2) } \end{aligned}$   2) $\begin{aligned} & 27+2-9=20 \\ & 20+68+35=123 \text { and Yes M1MOM1A0A1ft (Alt } 1 \text { ) } \end{aligned}$   3) $\begin{aligned} & 27+2+9=38 \\ & 38 \times 7=266 \\ & 266+68+35=369 \text { and No MOM1M1A0A1ft (Alt 1) } \end{aligned}$   4) $27-9$ or 18 $\begin{aligned} & 18 \times 7=126 \\ & 126+68+35=229 \text { and Yes M1M1M0A0A1ft (Alt 3) } \end{aligned}$	omits $£ 35$   omits number of nights   adds 'discount'   omits electricity


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


2(a)	$7 \times 6$ or 42	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their $42 \times 300$ or 12600	M1	
		Rb	
	their $12600 \div 1000$	M1	
		Rc	
		A1	Ignore units
		Aa	
	Additional Guidance		
	Each step is independent eg $7 \times 300 \div 1000$ gains M0M1M1A0 They can be done in any order		
	$7 \times 6 \times 0.3$ with no further steps is M3		
	$7 \times 6 \times 0.3 \div 1000$ is M2 (divided by 1000 twice)		
	$\begin{aligned} & 7 \times 6=42 \\ & 42 \times 300=12600 \\ & 12600 \div 1000=12.6 \\ & 12.6 \div 1000=0.0126 \quad \text { M1M1M0A0 (divided by } 1000 \text { twice) } \end{aligned}$		
	Check diagram for $7 \times 6$ or 42		


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


$4 \times 80$ or 320	$80 \times 0.1$ or 8	M 1	
their $320 \times 0.1$	their $8 \times 4$	M 1	
$(£) 32$	$R b$		
	$\mathrm{A1}$	SC2 288	
		Aa	

Additional Guidance
2(b) Allow equivalent methods for calculating 10\%
32 seen M2 A0
Examples

1) $80-32=48 \quad \mathrm{M} 2 \mathrm{AO}$
2) $80 \times 4=320$
$320 \div 10=32$
$32 \times 4=128 \quad$ M2AO

Answer 32\% discount M2 A0

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


2(c)	Alternative method 1		
	$700+600+700+600$ or 2600	$\begin{aligned} & \text { M1 } \\ & \mathrm{Ra} \end{aligned}$	perimeter of edge in centimetres
	their $2600 \div 10$ or 260	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{R} \end{aligned}$	division by 10   their 2600 can be any attempt at perimeter including 1200, 1300 or 1400
	their 260-4	M1	adjustment for corners
	256	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Alternative method 2		
	$700 \div 10 \text { or } 70$   or $600 \div 10 \text { or } 60$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	$2 \times \text { their } 70+2 \times \text { their } 60$   or 260	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{R} \end{aligned}$	Must be from division by 10
	their 260-4	$\begin{gathered} \mathrm{M} 1 \\ \text { / } \end{gathered}$	
	256	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	


$\begin{gathered} \text { 2(c) } \\ \text { cont'd } \end{gathered}$	Alternative method 3		
	$\begin{aligned} & 700-10 \text { or } 690 \\ & \text { or } \\ & 700-20 \text { or } 680 \\ & \text { or } \\ & 600-10 \text { or } 590 \\ & \text { or } \\ & 600-20 \text { or } 580 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	$2 \times(700-10)+2 \times(600-10)$   or $2 \times(700-20)+2 \times 600$   or $2 \times 700+2 \times(600-20)$   or $2560$	$\begin{gathered} \text { M1 } \\ \text { / } \end{gathered}$	
	their $2560 \div 10$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{R} \end{aligned}$	their 2560 can be from any attempt at perimeter
	256	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Alternative method 4		
	$700 \div 10 \text { or } 70$   or $600 \div 10 \text { or } 60$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their $70-2$ or 68 or their 60-2 or 58 or their $70-1$ and their $60-1$ or 69 and 59	$\begin{gathered} \text { M1 } \\ \text { / } \end{gathered}$	must be from division by 10
	$2 \times$ their $70+2 \times$ their 58 or $2 \times$ their $68+2 \times$ their 60 or $2 \times$ their $69+2 \times$ their 59	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	must be correct pairings from previous method
	256	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	


2(c)	Additional Guidance
	Working out area of drive divided by area of tiles cannot score any marks
$420000 \div 100=4200$ MOMOMOA0	
	70 and/or 60 cannot be implied $)$


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


2(d)	8 squares shaded in an arrangement with exactly 2 lines of symmetry	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{I}, \mathrm{I} \end{aligned}$		8 squares shaded in an arrangement with 1 line of symmetry or with 4 lines of symmetry or   any pattern with exactly two lines of symmetry (and NOT 8 squares)
	Additional Guidance			
	Mark final answer grid unless blank			


3(a)	$25 \%$	B1   $A a$	
	Additional Guidance		


$\mathbf{Q}$	Answer	Mark	Comments


3(b)	$3 \times 35$ or 105	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	luxury bouquets
	$24 \div 4$ or 6	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	number of standard bouquets
	their $6 \times 22$ or 132	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	their 6 must be a positive whole number $\leq 24$ excluding 1 and 3
	their $105+$ their 132 or   250 - their 132 or 118   or   250 - their 105 or 145	$\begin{aligned} & \mathrm{M} 1 \\ & R c \end{aligned}$	their 105 and their 132 must be from attempts at multiples of 35 and 22 (not 35 and 22)
	237 and No   or   105 and 118 and No   or   132 and 145 and No	$\begin{gathered} \text { A2 } \\ I, I \end{gathered}$	A1 237   or   105 and 118   or   132 and 145   or   A1ft correct conclusion for their value(s) if 4th M1 scored
	Additional Guidance		
	If their 6 (standard bouquets) $\geq 12$ then the income will be $>250$ on its own   However this still only gains (3rd) M1 unless the income from luxury bouquets is also included Examples   1) $24 \times 22=528 \mathrm{Yes}$   MOMOM1MOAOAO   2) $\begin{aligned} 3 \times 35 & =105 \\ 24 \times 22 & =528 \\ 105+528 & =633 \text { Yes } \quad \text { M1M0M1M1A0A1ft } \end{aligned}$   (continued on next page)   Using 3 of each type of bouquet can score max 3 marks   Example		


	$3 \times 35=105$
$3 \times 22=66$	
$105+66=171$ N0 $\quad$ M1M0M0M1A0A1ft	


$\mathbf{Q}$	Answer	Mark	Comments


3(c)	$\begin{aligned} & 180 \div 60 \text { or } 3 \\ & \text { or } \\ & 180 \div 50 \text { or } 3.6 \text { or } 3 \\ & \text { or } \\ & 130 \div 60 \text { or } 2 .(16 \ldots) \text { or } 2 \\ & \text { or } \\ & 130 \div 50 \text { or } 2.6 \text { or } 2 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & R b \end{aligned}$	allow embedded eg $60 \times 3=180$
	$180 \div 60 \text { and } 130 \div 50$   or   3 and 2.(6)   or $180 \div 50 \text { and } 130 \div 60$   or   3.(6) and 2.(1..)	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{R} \end{aligned}$	must be correct pairings
	their $3 \times$ their 2	$\begin{gathered} \text { M1 } \\ \text { / } \end{gathered}$	must be rounded down to integer(s).
	6	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Additional Guidance		
	Area by area $(180 \times 130) \div(60 \times 50)=7.8$ MOMOMOAO		
	Beware incorrect method $\begin{aligned} & 180 \div 60=3 \\ & 130 \div 50=2.6=3 \\ & 3+3=6 \end{aligned}$   This would score M1M1M0A0   Similarly $3+2.6=5.6=6$ scores M1M1M0A0		


$\mathbf{Q}$	Answer	Mark	Comments



| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


$\mathbf{4 ( a )}$	29 minutes	B 1   $R b$		
	Additional Guidance			


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


4(b)	Alternative method 1		
	(0)8.12	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	arrives at bus stop   implied by bus at (0)8.20
	(0)8.20	$\begin{aligned} & \mathrm{M} 1 \\ & R b \end{aligned}$	bus leaves Oxford   ft their arrival at bus stop
	(0)8.49	$\begin{aligned} & \mathrm{M} 1 \\ & R b \end{aligned}$	bus arrives at Bicester ft their bus leaving time
	(0)8.56 and Yes   or 11 mins (left) to do 7 min walk and Yes   or   4 mins and $Y e s$	$\begin{gathered} \text { A2 } \\ I, I \end{gathered}$	A1 (0)8.56   or   A1ft correct decision for their value with at least one method mark scored   SC2 (0)8.48 and Yes   SC1 (0)8.48 with no decision or incorrect decision
	Alternative method 2		
	(0)8.53	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	time bus must arrive by implied by arrival time of (0)8.49
	(0)8.49	$\begin{aligned} & \mathrm{M} 1 \\ & R b \end{aligned}$	time last possible bus arrives   ft their time bus must arrive by
	(0)8.20	$\begin{aligned} & \mathrm{M} 1 \\ & R b \end{aligned}$	time last possible bus leaves   ft their time last possible bus arrives
	(0)8.08 and Yes	$\begin{gathered} \text { A2 } \\ I, I \end{gathered}$	A1 (0)8.08   or   A1ft correct decision for their value with at least one method mark scored   SC2 (0)8.48 and Yes   SC1 (0)8.48 with no decision or incorrect decision
		tiona	idance
	For Alt 2 they must clearly be working	rever	


	Must clearly state a decision eg 'she is 4 mins early' also needs 'Yes (she is correct)' '	
	Answer 48 minutes is	zero
	Answer 48 -she has 12 minutes left	zero (both have no additions to 8 am


Q	Answer	Mark	Comments
	$8.64 \times 37$ or 319.68	M1   Aa	
	£319.68	$\begin{gathered} \text { A1 } \\ \text { I } \end{gathered}$	must have $£$ sign-can be in check condone £319.68p
4(c)   Check	reverse or alt method $319.68 \div 8.64=37$   or $319.68 \div 37=8.64$	$\begin{aligned} & \mathrm{B} 1 \mathrm{ft} \\ & A b \end{aligned}$	
	Additional Guidance		
	Penalise further work eg $319.68 \div 2=159.84$ M0A0		


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


4(d)	Alternative method 1		
	$\begin{aligned} & 453+399+504+483+411+312 \\ & +90+843+471+534 \text { or } 4500 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	condone one error
	their $4500 \div 60$ or 75 or   their $4500 \div 10$ or 450	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	their $75 \div 10$   or   their $450 \div 60$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
	7.5 and Yes   or   7 minutes 30 seconds and Yes	$\begin{gathered} \mathrm{A} 2 \\ \mathrm{I}, \mathrm{I} \end{gathered}$	A1 7.5 or 7 minutes 30 seconds or   A1 ft correct decision for their value(s) if 1st M1 scored and division by 10 seen
	Alternative method 2		
	$\begin{aligned} & 453+399+504+483+411+312 \\ & +90+843+471+534 \text { or } 4500 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	condone one error
	their $4500 \div 10$ or 450	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
	$8 \times 60$ or 480	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
	450 and 480 and Yes	$\begin{aligned} & \text { A2 } \\ & I, I \end{aligned}$	A1 450 and 480   or   A1 ft correct conclusion from their values if 1st M1 scored and division by 10 seen


$\begin{gathered} \text { 4(d) } \\ \text { cont'd } \end{gathered}$	Alternative method 3		
	one value converted to minutes correctly   eg 7.55 or 7 mins 33 secs	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	
	$\begin{aligned} & 7.55+6.65+8.4+8.05+6.85+5.2 \\ & +1.5+14.05+7.85+8.9 \text { or } 75 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	ft their converted values
	their $75 \div 10$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
	7.5 and Yes	$\begin{gathered} \text { A2 } \\ I, I \end{gathered}$	A1 7.5   or A1ft correct decision for their value if 2nd M1 scored and division by 10 seen
	Alternative method 4		
	$\begin{aligned} & 453+399+504+483+411+312 \\ & +90+843+471+534 \text { or } 4500 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & R c \end{aligned}$	condone one error
	$\begin{aligned} & 8 \times 60 \text { or } 480 \\ & \text { or } \\ & 8 \times 10 \text { or } 80 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	their $480 \times 10$   or   their $80 \times 60$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	4500 and 4800 and Yes	$\begin{gathered} \text { A2 } \\ I, I \end{gathered}$	A1 4500 and 4800   or   A1ft correct conclusion for their values if 1st M1 scored and multiplication by 10 seen

Additional Guidance is on the next page

4.	Additional Guidance
	7.5 followed by 7 minutes 5 seconds and Yes M3A0A1ft
	Allow comparison between inconsistent units eg 450 and 8
	Condone 453 $+399+504+483+411+312+90+843+471+534 \div 10=4019.4$ (or   similar depending on order) for method marks

