FUNCTIONAL SKILLS CERTIFICATE Functional Mathematics
 Level 1
 Mark Scheme

March 2017

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

Examinations are marked to award positive achievement.
Marks are awarded for demonstrating the following interrelated process skills.
Representing Selecting the mathematics and information to model a situation.
R. 1 Candidates recognise that a situation has aspects that can be represented using mathematics.
R. 2 Candidates make an initial model of a situation using suitable forms of representation.
R. 3 Candidates decide on the methods, operations and tools, including ICT, to use in a situation.
R. 4 Candidates select the mathematical information to use.

Analysing Processing and using mathematics.
A. $1 \quad$ Candidates use appropriate mathematical procedures.
A. 2 Candidates examine patterns and relationships.
A. 3 Candidates change values and assumptions or adjust relationships to see the effects on answers in models.
A. 4 Candidates find results and solutions.

Interpreting Interpreting and communicating the results of the analysis.
I. 1 Candidates interpret results and solutions.
I. 2 Candidates draw conclusions in light of situations.
I. 3 Candidates consider the appropriateness and accuracy of results and conclusions.
I. 4 Candidates choose appropriate language and forms of presentation to communicate results and solutions.

In particular, individual marks are mapped onto the following skills standards.
Representing Making sense of the situations and representing them.
A learner can:
Ra Understand routine and non-routine problems in familiar and unfamiliar contexts and situations.
$\mathbf{R b} \quad$ Identify the situation or problems and identify the mathematical methods needed to solve them.

Rc Choose from a range of mathematics to find solutions.

Analysing Processing and using the mathematics.
A learner can:

Aa Apply a range of mathematics to find solutions.
Ab Use appropriate checking procedures and evaluate their effectiveness at each stage.

Interpreting Interpreting and communicating the results of the analysis. A learner can:

Ia Interpret and communicate solutions to multistage practical problems in familiar and unfamiliar contexts and situations.
lb Draw conclusions and provide mathematical justifications.

To facilitate marking, the following categories are used:
M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$

\mathbf{Q}	Answer	Mark	Comments

1(a)	$2 \times 5.79+2 \times 4.79$ or $11.58+9.58$ or 21.16	$\begin{aligned} & \mathrm{M} 1 \\ & R b \end{aligned}$	
	their 21.16-18.99 or $18.99+3$ or 21.99 or 21.16 - 3 or 18.16	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	their 21.16 must be from an attempt at the cost of at least 2 tickets the subtraction may then be reversed
	2.17 and No or 21.16 and 21.99 and No or 18.16 and No	$\begin{gathered} \text { A2 } \\ \text { I } \end{gathered}$	A1 2.17 or A1 21.16 and 21.99 or A1 18.16 A1 ft correct decision for their value(s) if 2nd M1 awarded and cost is attempted for exactly 4 tickets SC2 21.16 and No

Additional Guidance

No can be implied eg Its less than £3
Example of ft
$4 \times 5.79=23.16$
$23.16-18.99=4.17$ Yes MOM1A0A1ft

1(b)	8	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Aa} \end{aligned}$	
	17	$\begin{aligned} & \mathrm{B} 1 \mathrm{ft} \\ & \mathrm{Aa} \end{aligned}$	correct total of their $8+9$
	Additional Guidance		
	If frame 1 is blank award B1 for 17 in frame 2		

\mathbf{Q}	Answer	Mark	Comments

1(c)	(Frame 9=) $75+10+3+5$ or 93	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	93 may be written in frame 9 total
	their $93+3+5$	$\begin{aligned} & \text { M1 } \\ & A a \end{aligned}$	their 93 must be >75 $75+10+3+5+3+5$ or $75+26$ implies M2
	101 and Yes	$\begin{gathered} \text { A2 } \\ l \end{gathered}$	A1 101 A1 ft correct decision for their value if 2 nd M1 awarded SC2 88 and 91 and No SC1 88 and 91
	Additional Guidance		
	Working may be seen on the scorecard. Mark working lines if different to scorecard. 85 in frame 9 and 93 in frame 10 and No scores MOM1A0A1ft Final answer of 93 and No gains M0M1A0A1ft This may be in the working lines.		

1(d)	Jamil/He won 3 games (out of 5) but Tom (only) won 2 (out of 5) or Jamil/He won a greater proportion of games/more games (than Tom) or Jamil/He won 60% of the games but Tom (only) won 40\%	$\begin{gathered} \mathrm{B} 1 \\ \text { l } \end{gathered}$	oe eg Tom lost 3 games but Jamil (only) lost 2
	Additional Guidance		
	Ignore other non-contradictory working or comments unless they state that Jamil is not correct/supported.		

\mathbf{Q}	Answer	Mark	Comments

Q	Answer	Mark	Comments
	Evidence of method may be seen under/next to tables. For Alt 4 other ways of comparing the differences may be seen. eg Toms 4 positive differences listed and Jamil's 1 positive difference. Ignore other non-contradictory working or comments unless they state that Tom is not correct/supported.		

| 2(a) | Tuna | B1
 $A a$ |
| :--- | :--- | :---: | :---: |
| | Additional Guidance | |
| | | |

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1		
(with salad) $29+20+32+25 \text { or } 106$ or (without salad) $26+30+36+22 \text { or } 114$	$\begin{aligned} & \text { M1 } \\ & R b \end{aligned}$	Allow one error when reading from graph
106 and 114 and No	$\begin{gathered} \text { A2 } \\ \text { I } \end{gathered}$	A1 106 and 114 A1ft Correct decision for their values
Alternative method 2		
Differences (without salad) $-3,+10,+4,-3$ or (with salad) $+3,-10,-4,+3$	$\begin{aligned} & \text { M1 } \\ & R b \end{aligned}$	Allow one error
+14 and -6 and No or -14 and +6 and No or 8 and No or 8 more without salad or 8 less with salad	$\begin{gathered} \text { A2 } \\ \text { I } \end{gathered}$	A1 +14 and - 6 or -14 and +6 or 8 A1ft Correct decision for their value(s)
Additional Guidance		
M1 can be awarded for indicating addition of 4 corresponding values with at most one error. Example $27+20+32+25$ and $26+30+34+23$ gains M 1 for the first 4 (one error) even though the 2nd list has two errors. Allow 'they sold more without salad' to imply 'No' May need to look at graph		

\mathbf{Q}	Answer	Mark	Comments

2(d)	Alternative method 1		
	2×1000 or 2000	M1	
		Aa	
	$500 \times$ their 12 or 6000	M1	ft their 12 from (c)
		Ra	
	their $6000 \div$ their 2000	M1	their total grams needed \div their grams in
		Rc	
	3	A1ft	only ft their 12 from (c)
		Aa	

Q	Answer	Mark	Comments

2(d)	Alternative method 2		
	$500 \times$ their 12 or $\frac{500}{25} \times 300$ or 6000	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	ft their 12 from (c) Allow complete build up method to 500 eg $25=300(\mathrm{~g})$ $50=600(\mathrm{~g})$ $500=6000(\mathrm{~g})$
	their $6000 \div 1000$ or 6	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	their total grams needed $\div 1000$
	their $6 \div 2$	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	their 6 must come from converting their grams to kg
	3	A1ft Aa	only ft their 12 from (c)
	Alternative method 3		
	2×1000 or 2000	M1 Aa	
	their $2000 \div 300 \times 25$ or their $2000 \div$ their 12 or 166.(66...) or 166.7	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	$500 \div$ their 166.(66....)	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	
	3	A1ft Aa	only ft their 12 from (c)
	Additional Guidance		
	Allow 3 with no working for full marks. If their 12 from \mathbf{c} leads to a decimal accept the complete decimal or rounding up correctly to any sf .		

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

2(f)	Fully communicated shortest route chosen starting shop to A and 8 (miles) (Shop) $\rightarrow A \rightarrow C \rightarrow B \rightarrow$ Shop and 8 (miles)	B3 Rb Aa I	B2 The correct shortest route with incorrect or no distance or not indicated as their choice or Shortest route but starting shop to B and 8 miles (Shop) $\rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A} \rightarrow$ Shop and 8 miles or A possible route starting shop to A with correct distance (but not the shortest) $\begin{gathered} \text { eg1 (Shop) } \rightarrow A \rightarrow B \rightarrow C \rightarrow \text { Shop } \\ \text { and } 10 \frac{1}{2} \text { (miles) } \\ \text { eg2 (Shop) } \rightarrow A \rightarrow C \rightarrow \text { Shop } \rightarrow B \rightarrow \end{gathered}$ Shop and $8 \frac{1}{2}$ (miles) B1 A possible route starting shop to A but with incorrect or no total distance eg1 (Shop) $\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow$ Shop and $11 \frac{1}{2}$ (miles) or B1 Route with correct distance visiting all 3 offices but either not starting shop to A or not finishing at the shop Note the exception to this is the shortest route of 8 miles starting shop to B as shown in B2 above

\mathbf{Q}	Answer	Mark	Comments

3(a)	Two sinks of correct size against North wall	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Ra} \end{aligned}$	
	Three circles of approx. correct size in a line in the South half	$\begin{gathered} \text { B1 } \\ \text { I } \end{gathered}$	May be sketched
	One rectangle (for desk) measuring 1 cm by 2 cm	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Aa} \end{aligned}$	
	One rectangle (for waiting area) 4 cm by 2 cm	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Door area kept clear and all items labelled correctly	$\begin{gathered} \mathrm{B} 1 \\ \text {, } \end{gathered}$	
	Additional Guidance		

3(b)	2 different people on each shift	$\begin{aligned} & \mathrm{B} 1 \\ & \text { Ra } \end{aligned}$	
	Jenny, Craig and Mia included 8 times each	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Craig does not work on Saturday	$\begin{gathered} \text { B1 } \\ \text { / } \end{gathered}$	
	Each person has at least 1 day off	$\begin{gathered} \text { B1 } \\ \text { / } \end{gathered}$	
	Additional Guidance		
	For 2nd B1 condone twice on the same shift		
	If there are blanks then the only possible mark is the 3rd B1 if Saturday is completed using only Jenny and Mia.		
	Mark 2nd grid unless blank.		

\mathbf{Q}	Answer	Mark	Comments

3(c)	$12 \times 60 \text { or } 720$ or $30 \times 33 \text { or } 990$	$\begin{aligned} & \text { M1 } \\ & R b \end{aligned}$	
	$12 \times 60+30 \times 33$ or their 720 + their 990 or 1710	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	2 different values their 720 must be >60 their 990 must be >33
	$704+300$ or 1004	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	their 1710 - their 1004 or their $1004+700$ or 1704 or their 1710-700 or 1010	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	their 1710-704-300 implies previous M1 their 1710 can be 93 (from $60+33$) their income - both costs
	706 and Yes or 1710 and 1704 and Yes or 1010 and 1004 and Yes	$\begin{gathered} \text { A2 } \\ \text { I } \end{gathered}$	A1 706 or 1710 and 1704 or 1010 and 1004 A1ft correct decision for their value(s) if 3rd and 4th M1 awarded
	Additional Guidance		

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$100 \div 1000$ or 0.1 or $\frac{1}{10}$	M1	
Ra		
their 0.1×500 or 50	M1	
or $500 \div 10$ or 50		
or 500×4 or 2000	Aa	
$50 \times 4=200$	A1	
or $200 \div 4=50$		
or $2000 \times 0.1=200$	I	50 must be from 0.1×500

Alternative method 2

100×500 or 50000	M1	
Ra		
their $50000 \div 1000$ or 50	M1	
$50 \times 4=200$	Aa	
or $200 \div 4=50$	A1	I 50 must be from $50000 \div 1000$

Alternative method 3

500×4 or 2000	M1 Ra	500×100 or 50000	
their 2000×100 or 200000	M1 Aa	their 50000×4 or 200000	
$200000 \div 1000=200$ or $200 \times 1000=200000$	A1		
Additional Guidance			

$50 \times 4=200$ or $200 \div 4=50$ on its own is MOMOAO
Any 50 used must clearly be from using the method in alt 1 or alt 2

Q	Answer	Mark	Comments

4(c)	$200 \div 5$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	
	40	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
4(c) check	Reverse or alt method eg reverse their $40 \times 5=200$ or $200 \div$ their $40=5$ eg alt method $\begin{aligned} & 200 \div 10 \times 2=40 \\ & \text { or } 200 \times 0.2=40 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \mathrm{ft} \\ & A b \end{aligned}$	
	Additional Guidance		
	Mark holistically so two different methods of $200 \div 5=40$ and $200 \div 10 \times 2=40$ gains M1A1B1		

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

Their $40 \times 15(\div 100)$ or 600 or 6	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	ft from (c) implied by 19.88
$\begin{aligned} & 38-(\text { their } 6+13.88) \\ & \text { or } \\ & 20+(\text { their } 6+13.88) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	For 38 condone 68
(£)18.12 and No or (£)39.88 and No	$\begin{gathered} \text { A2ft } \\ \text { I } \end{gathered}$	ft from (c) A1 (£)18.12 or (£)39.88 or A1ft correct decision for their value if M2 awarded

Alternative method 2

their $40 \times 15(\div 100)$ or 600 or 6	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	ft from (c)
$38-20 \text { or } 18$ and their $6+13.88$ or 19.88	M1 Rc	For 38 condone 68
(£)18 and (£)19.88 and No	A2ft II	ft from (c) A1 (£)18 and (£)19.88 or A1ft correct decision for their values if M2 awarded
Additional Guidance		
68 comes from adding the cost of 200 units at 15 p to the cost for the ordinary bulbs- a misinterpretation		
This gives $68-19.88=48.12$ Yes M1M1 A0A1ft		
Equivalent comparisons should be given full credit		
Example		
$40 \times 0.15=6$		
$38-20-6=12$ No M2A2 (this is a comparison of $£ 12$ with $£ 13.88$)		

