FUNCTIONAL SKILLS CERTIFICATE Functional Mathematics
 Level 1
 Mark Scheme

June 2017
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

Examinations are marked to award positive achievement.
Marks are awarded for demonstrating the following interrelated process skills.
Representing Selecting the mathematics and information to model a situation.
R. 1 Candidates recognise that a situation has aspects that can be represented using mathematics.
R. 2 Candidates make an initial model of a situation using suitable forms of representation.
R. 3 Candidates decide on the methods, operations and tools, including ICT, to use in a situation.
R. 4 Candidates select the mathematical information to use.

Analysing Processing and using mathematics.
A. $1 \quad$ Candidates use appropriate mathematical procedures.
A. 2 Candidates examine patterns and relationships.
A. 3 Candidates change values and assumptions or adjust relationships to see the effects on answers in models.
A. 4 Candidates find results and solutions.

Interpreting Interpreting and communicating the results of the analysis.
I. 1 Candidates interpret results and solutions.
I. 2 Candidates draw conclusions in light of situations.
I. 3 Candidates consider the appropriateness and accuracy of results and conclusions.
I. 4 Candidates choose appropriate language and forms of presentation to communicate results and solutions.

In particular, individual marks are mapped onto the following skills standards.
Representing Making sense of the situations and representing them.
A learner can:
Ra Understand routine and non-routine problems in familiar and unfamiliar contexts and situations.

Rb Identify the situation or problems and identify the mathematical methods needed to solve them.

Rc Choose from a range of mathematics to find solutions.

Analysing Processing and using the mathematics.
A learner can:
Aa Apply a range of mathematics to find solutions.
Ab Use appropriate checking procedures and evaluate their effectiveness at each stage.

Interpreting Interpreting and communicating the results of the analysis. A learner can:

Ia Interpret and communicate solutions to multistage practical problems in familiar and unfamiliar contexts and situations.
lb Draw conclusions and provide mathematical justifications.

To facilitate marking, the following categories are used:
M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

Q Answer	Mark	Comments	
1(a)	$3 \frac{1}{2}$	B 1	

1(b)	Alternative method 1		
	188-170 or 18	$\begin{aligned} & \text { M1 } \\ & R b \end{aligned}$	
	their 18×7 or $150 \div 7$ or 21.4	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	Their 18 must be from an attempt to subtract 2 calorie values from the table
	126 and No or 18 and 21.4 and No	$\begin{gathered} \text { A2 } \\ \text { l } \end{gathered}$	A1 126 or A1 18 and 21.4 or A1ft Correct conclusion for their value(s) if M2 awarded
	Alternative method 2		
	$188 \times 7 \text { or } 1316$ or $170 \times 7 \text { or } 1190$	$\begin{aligned} & \text { M1 } \\ & R b \end{aligned}$	
	their 1316 - their 1190 or their 1316-150 or 1166 or their $1190+150$ or 1340	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	their 1316 and their 1190 must be from an attempt to multiply calorie values from the table by 7 (two different values)
	126 and No or 1190 and 1166 and No or 1316 and 1340 and No	$\begin{gathered} \mathrm{A} 2 \\ \text { l } \end{gathered}$	A1 126 or A1 1190 and 1166 or A1 1316 and 1340 or A1ft Correct conclusion for their value(s) if M2 awarded

\mathbf{Q}	Answer	Mark	Comments

1(b)	Additional Guidance	
	Using the incorrect calorie value(s) from the table can still gain method marks Eg $\begin{aligned} & 170 \times 7=1190 \\ & 219 \times 7=1533 \\ & 1533-1190 \\ & =343 \mathrm{No} \end{aligned}$ The other incorrect value is $222 \times 7=1554$	M1 M1 A0A1ft
	possible subtractions of two calorie values from the table are $\begin{aligned} & 222-170=52 \\ & 222-219=3 \\ & 222-188=34 \\ & 219-170=49 \\ & 219-188=31 \end{aligned}$	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

\mathbf{Q}	Answer	Mark	Comments

	$\begin{aligned} & 8 \times 3.5 \text { or } 8+8+8+4 \\ & \text { or } \\ & 28 \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & R b \end{aligned}$	Cost of oats Ignore units		
	$72 \div 4$ or 18		$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	Cost of dried apricots Ignore units		
	their $28+$ their $18+95$ or 141		$\begin{aligned} & \mathrm{M} 1 \\ & \text { Aa } \end{aligned}$	Total cost (3 components)		
	2.65 - their 1.41	their $1.41+1.2(0)$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	their 1.41 must be from an attempt at total of 3 costs 2.65 - their 0.28 - their $0.18-0.95$ implies M2		
	(£)1.24 and Yes	(£)2.61 and Yes	$\begin{gathered} \text { A2 } \\ \text { l } \end{gathered}$	A1 (£) 1.24 A1ft Correct conclusion for their value if 3rd and 4th M1 awarded		(£)2.61 Correct sion for their if 3rd and 4th arded
1(d)	Additional Guidance					
	Working can be in $£$ or p for all M marks					
	For the 3rd M1 their 28 and their 18 must be costs not grams but can be awarded without the first 2 method marks Example $\begin{aligned} & 8+72+95=£ 1.75 \\ & 2.65-1.75=90 \mathrm{p} \mathrm{No} \end{aligned}$					M0M0M1M1 A0A1ft
	Some incorrect work may lead to the shop muesli being cheaper so the 4th method mark is redundant Example $\begin{aligned} & 8+8+8+4=28 \\ & 72 \times 4=288 \\ & 28+288+95=411=£ 4.11 \end{aligned}$ No the shop muesli is actually cheaper (subtraction not needed so don't penalise but they must state that the shop muesli is cheaper)					M1 M0 M1M1 A0 A1ft

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

2.5 hours or 2 h 30 for flight 1 or 4 hours for flight 2 or 6.5 or 6 h 30	$\begin{aligned} & \text { M1 } \\ & \text { Rb } \end{aligned}$	condone 2.30 condone 6.30
their $2.5+$ their $4+29$ or 35 - their 2.5 - their 4	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	Adding both times to 29 or subtracting both times from 35
35.5 and Yes or 35h 30 and Yes or 28.5 and Yes or 28h 30 and Yes	$\begin{gathered} \text { A2 } \\ \text { I } \end{gathered}$	A1 35.5 or 35 h 30 or 28.5 or 28 h 30 or A1ft correct decision for their value if 2 nd M1 is awarded

2(a)	Alternative method 2		
	2.5 or 2 h 30 hours for flight 1 or 4 hours for flight 2 or 6.5 or 6 h 30 or $35-29 \text { or } 6$	$\begin{aligned} & \text { M1 } \\ & \text { Rb } \end{aligned}$	condone 2.30 condone 6.30
	their $2.5+$ their 4 and $35-29$	$\begin{aligned} & \text { M1 } \\ & \mathrm{Aa} \end{aligned}$	
	6.5 and 6 and Yes	$\begin{gathered} \text { A2 } \\ \text { । } \end{gathered}$	A1 6.5 and 6 6.5 can be 6 h 30 A1ft correct decision for their values if 2nd M1 is awarded

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

2(a)	Additional Guidance
	For method marks condone poor time notation eg 2.3 but for accuracy marks the time notation must be correct.
	Check for times for each day next to the table
	A correct answer of 35.5 and yes with no method scores full marks M1M1A2 An incorrect total time with no times for each day shown is M0M0A0A0ft Example $29+7.5=36.5$ yes M0M0A0 but times seen next to the table can be awarded marks Example 3.5 and 4 seen next to the table then 29 + 7.5 = 36.5 yes score M1M1A0A1ft

\mathbf{Q}	Answer	Mark	Comments

2(b)	Alternative method 1			
	$1620 \div 3$ or 540		$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	
	their 540×10		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	$1620 \times 10 \div 3$ implies M2 their 540 cannot be 5000
	5400		$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Alternative method 2			
	$5000 \div 10$ or 500		$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	
	their 500×3		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
	1500		$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Additional Guidance			
	ignore fw eg 400 extra			
	Note -starting with 5000 but using the steps in the order of the data sheet gives $5000 \div 3 \times 10=16666$ This scores MOM1A0			
	ignore units			
	steps can be done in any order example$\begin{array}{ll} 1620 \times 10 \text { or } 16200 & \text { M1 } \\ \text { their } 16200 \div 3 & \text { M1 } \end{array}$			

Q	Answer	Mark	Comments
2(c)	$3200 \div 4$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	ignore units
	800	A1 Aa	
Check	Reverse or alt method eg $800 \times 4=3200$ or $3200 \div 800=4$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { Ab } \end{aligned}$	
	Additional Guidance		
	Mark 'holistically' so two different methods seen in the lines for 2 c can be awarded the check or method for 2c can be seen in the check Example in 2c answer only of 900 in 2c check $3200 \div 4=900$ Award M1A0B0		
	$4 \times 800=3200$ with 800 not identified as the answer is M1A0		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Additional Guidance

For the first accuracy mark their 7 must be ≤ 12 but cannot be 4 or 8 (unless they clearly state 4 months etc)
Values to look out for
32480 scores B1 M3
580 is 145×4 (M1 for one correct pair multiplied)
1160 is 145×8 (M1 for one correct pair multiplied)
4640 is $145 \times 4 \times 8$ (M 2 for three correct values multiplied)
4060 is $145 \times 4 \times 7$ (M2 for three correct values multiplied and B1 for 7)
2(d)
8120 is $145 \times 7 \times 8$ (M2 for three correct values multiplied and B1 for 7)
If their 32480 is less than 7950 then they must state that it is a loss
Common incorrect months used with their final answers
6 months: income $27480 \rightarrow$ profit 19890 and No (6 marks) (27480 scores M3)
12 months: income $55680 \rightarrow$ profit 47730 and Yes (6 marks)
(55680 scores M3)
5 months: income $23200 \rightarrow$ profit 15250 and No (6 marks)
(23200 scores M3)

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { (0) }+3+5+3+2+2+(0)+3+3+ \\ 5+3+4+4+5+3+1+2+2+4 \\ +4 \\ \text { or } \\ 58\end{array} & \text { M1 } & \text { Rc }\end{array} \begin{array}{l}\text { Allow one error or omission } \\ \text { If no working then total of } 56-60 \text { implies } \\ \text { addition }\end{array}\right]$

$\begin{aligned} & (0)+3+5+3+2+2+(0)+3+3+ \\ & 5+3+4+4+5+3+1+2+2+4 \\ & +4 \end{aligned}$ or 58	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	Allow one error or omission If no working then total of 56-60 implies addition
2.5×20 or 50	$\begin{aligned} & \mathrm{M} 1 \\ & \text { Aa } \end{aligned}$	
58 and 50 and Yes	$\begin{gathered} \text { A2 } \\ \text { I/ } \end{gathered}$	A1 58 and 50 or A1ft Correct conclusion for their values if M2 awarded
Additional Guidance		
2.9 and Yes or it's increased by 0.4 gets full marks even if no method is seen. Ignore incorrect attempts to show the increase if 2.9 seen.		
+ signs written between the numbers on the exam paper is enough for first M1		

Q
 values) is M1M0A0 unless recovered to correct answer

	Alternative method 1			
3 (b)	$80 \div 20$ or 4		$\begin{aligned} & \text { M1 } \\ & \text { Rb } \end{aligned}$	
	E\&C or BLT or CS	their 4×5 or 20 or their 4×10 or 40 or their 4×5 or 20	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	$5 / 20 \times 80$ or $10 / 20 \times 80$ or $5 / 20 \times 80$
	their 20×2 or 40 or their 40×3 or 120 or their 20×3 or 60		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	Costs of their number of sandwiches
	their 40 + their 120 + their 60		$\begin{aligned} & \mathrm{M} 1 \\ & \text { Aa } \end{aligned}$	must add 3 values not $2+3+3$ or $5+10+5$
	(£)220 and Yes or (£) 20 more		$\begin{gathered} \text { A2 } \\ \text { I। } \end{gathered}$	A1 (£)220 or A1ft correct conclusion for their value if 3rd and 4th M1 awarded

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1 (bar chart)		
Axes labelled S,V,T,N oe and number (of people) or frequency	$\begin{gathered} \mathrm{B} 1 \\ \text { / } \end{gathered}$	May be horizontal or vertical bar chart
Frequency scales shown from 0 to at least 7	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Ra} \end{aligned}$	0 need not be labelled For a freehand chart(ie not on the grid) condone unequal gaps between numbers For a chart on the grid do not condone labelling the middle of a block
Equal width bars drawn to correct height $(3,7,4,6)$ with equal gap between them	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Aa} \end{aligned}$	Condone no gaps Must be a consecutive scale but allow heights of $3,7,4$ and 6 squares if scale is not labelled
Alternative method 2 (pictogram)		
Chooses appropriate symbol and describes in key	$\begin{gathered} \mathrm{B} 1 \\ \text { / } \end{gathered}$	A consistent symbol that can be split into smaller parts
Correct number of symbols for one item (horizontal or vertical)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Ra} \end{aligned}$	
Correct number of symbols for all items, approximately equally spaced (horizontal or vertical) with items correctly labelled	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Aa} \end{aligned}$	For spacing if they have drawn the correct number of symbols then veg must be the longest, then none, tuna, salmon
Additional Guidance		
If there are 2 charts/diagrams mark the best attempt		
Mark 'intention' for heights		
For the 2nd and 3rd B1 the symbols for each type of sushi may be different but must represen the same value		
A vertical line graph can score B1B1 B0		
A pie chart scores B0B0B0		
non-consecutive scale can score maximum of first B1 eg just labelling 3,4,6,7		

| Q Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |

4 (a)	Alternative method 1		
	$\begin{aligned} & 3+2+3+2 \\ & \text { or } 2 \times 3+2 \times 2 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	
	10	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Alternative method 2		
	$\begin{aligned} & 10.6-(3+3) \text { and } 2+2 \\ & \text { or } \\ & 10.6-(2+2) \text { and } 3+3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	Works out amount for long sides and checks enough for short sides or Works out amount for short sides and checks enough for long sides
	4.6 and 4 or 6.6 and 6	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Alternative method 3		
	10.6-3-3-2-2	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	
	0.6	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
		iona	uidance
	Ignore units		

\mathbf{Q}	Answer	Mark	Comments

4 (b)	3×2 or 6	M1 Ra	step 1	$3 \times 2 \times 2.5 \text { in any }$ order is M2
	their 6×2.5 or 15	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	step 2	
	their 15×141	$\begin{aligned} & \text { M1 } \\ & \text { Rb } \end{aligned}$	step 3 their 15 cannot be 2,3 or 2.5	
	2115 (BTU per hour)	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$		
	600 mm	B1ft I	ft correct size for their value but must have multiplied by a room factor	
	Additional Guidance			
	To award the final B1 working must be seen to show that some value has been multiplied by a room factor (unless correct answer of 2115 seen) $\text { eg } 3 \times 2=6$ $6 \times 177=1062$ needs 500 mm radiator			M1M0M0A0B
	If their final BTU is greater than 3536 there is no possible radiator so B0ft			
	Steps could be done in a different order			

| Q Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |

4 (c)	Alternative method 1		
	2×3 or 6	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their 6×3.99 or 23.94	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	23.94 implies M1M1 their $6>1$
	their $23.94+95+5.79$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	3 costs totalled
	(£)124.73 and Yes	$\begin{gathered} \text { A2 } \\ 1 \end{gathered}$	A1 (£) 124.73 or A1 ft correct conclusion for their value if 3rd M1 awarded
	Alternative method 2		
	2×3 or 6	$\begin{aligned} & \text { M1 } \\ & R a \end{aligned}$	
	their 6×3.99 or 23.94	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	23.94 implies M1M1 their $6>1$
	125-95-5.79 or 24.21	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	
	24.21 and 23.94 and Yes	$\begin{gathered} \text { A2 } \\ \text { l } \end{gathered}$	A1 24.21 and 23.94 or A1 ft correct conclusion for their values if 3rd M1 awarded

\mathbf{Q}	Answer	Mark	Comments

Additional Guidance		
	Other variations on the mark schemes are possible.	
	Common incorrect answers:	
	using perimeter	
$10 \times 3.99=39.9$		
$39.9+5.79+95=140.69$ No	M0M0M1A0A1ft	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

