FUNCTIONAL SKILLS CERTIFICATE Functional Mathematics
 Level 1
 Mark Scheme

January 2018

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

Examinations are marked to award positive achievement.
Marks are awarded for demonstrating the following interrelated process skills.
Representing Selecting the mathematics and information to model a situation.
R. 1 Candidates recognise that a situation has aspects that can be represented using mathematics.
R. 2 Candidates make an initial model of a situation using suitable forms of representation.
R. 3 Candidates decide on the methods, operations and tools, including ICT, to use in a situation.
R. 4 Candidates select the mathematical information to use.

Analysing Processing and using mathematics.
A. $1 \quad$ Candidates use appropriate mathematical procedures.
A. 2 Candidates examine patterns and relationships.
A. 3 Candidates change values and assumptions or adjust relationships to see the effects on answers in models.
A. 4 Candidates find results and solutions.

Interpreting Interpreting and communicating the results of the analysis.
I. 1 Candidates interpret results and solutions.
I. 2 Candidates draw conclusions in light of situations.
I. 3 Candidates consider the appropriateness and accuracy of results and conclusions.
I. 4 Candidates choose appropriate language and forms of presentation to communicate results and solutions.

In particular, individual marks are mapped onto the following skills standards.
Representing Making sense of the situations and representing them. A learner can:

Ra Understand routine and non-routine problems in familiar and unfamiliar contexts and situations.

Rb Identify the situation or problems and identify the mathematical methods needed to solve them.

Rc Choose from a range of mathematics to find solutions.

Analysing Processing and using the mathematics.
A learner can:
Aa Apply a range of mathematics to find solutions.
Ab Use appropriate checking procedures and evaluate their effectiveness at each stage.

Interpreting Interpreting and communicating the results of the analysis.
A learner can:
Ia Interpret and communicate solutions to multistage practical problems in familiar and unfamiliar contexts and situations.
lb Draw conclusions and provide mathematical justifications.

To facilitate marking, the following categories are used:
M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$

1(b)	$60 \div 24$ or $24+24+12(=60)$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	2.5	A1	SC1 15
		Aa	
	Additional Guidance		
	$\begin{aligned} & 60 \div 24=2.5 \text { followed by } 2.5 \times 6=15 \text { scores M1A0 } \\ & 6 \times 60 \div 24=15 \text { scores SC } 1 \end{aligned}$		

$\mathbf{1}(\mathrm{c})$	$168(\times 2)$	$\begin{array}{c}\text { M1 } \\ R b\end{array}$	
	336	A 1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

1(d)	21×3 or 63	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their 336×70 or 23520 or their $336 \times 0.7(0)$ or $235.2(0)$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	their 336 can be 168
	their 63 + their 235.2(0) or 298.2(0)	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	units must be consistent
	their $298.2(0) \div 10$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	their 298.2(0) can be their 63 or their 235.20
	£29.82	A1ft I	must see £ symbol ft their 336 from 1 (c)
	Additional Guidance		
	Example 1 $\begin{aligned} & 21 \times 3=63 \\ & 168 \times 0.7=117.6 \\ & 63+117.6=180.6 \\ & 180.6 \div 10=£ 18.06 \end{aligned}$ Scores M4A1ft if their $336=168$ in 1(c) Scores M4AOft if their $336 \neq 168$ Example 2 $\begin{aligned} & 21 \times 3=63 \\ & 336 \times 0.7=235.2 \\ & 235.2 \div 10=23.52 \end{aligned}$ Scores M1M1M0M1A0ft		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

1(e)	Alternative method 1		
	$\begin{aligned} & 11 \times 300 \div 1000=3.3 \\ & \text { or } \\ & 11 \div 1000 \times 300=3.3 \\ & \text { or } \\ & 11 \times 300=3300 \\ & \text { and } \\ & 3300 \div 1000=3.3 \\ & \text { or } \\ & 11 \div 1000=0.011 \\ & \text { and } \\ & 0.011 \times 300=3.3 \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { I } \\ \text { I } \end{gathered}$	B1 any incomplete method, e.g. $11 \times 300 \div 1000$ or their $3300 \div 1000=3.3$ or $11 \times 300=3300$ or $11 \div 1000=0.011$ or $0.011 \times 300=3.3$ or 3.3 or full method with one error, e.g. $11 \times 300=330$ and $330 \div 1000=3.3$

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

1(e)	Alternative method 2		
	$\begin{aligned} & 3.2 \times 1000 \div 300=10.6(\ldots) \text { or } 10.7 \\ & \text { or } \\ & 3.2 \div 300 \times 1000=10.6(\ldots) \text { or } 10.7 \\ & \text { or } \\ & 3.2 \times 1000=3200 \\ & \text { and } \\ & 3200 \div 300=10.6(\ldots) \text { or } 10.7 \\ & \text { or } \\ & 3.2 \div 300=0.0106(\ldots) \text { or } 0.0107 \\ & \text { and } \\ & 0.0106(\ldots) \times 1000=10.6(\ldots) \text { or } 10.7 \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { I } \\ \text { I } \end{gathered}$	B1 any incomplete method, e.g. $3.2 \times 1000 \div 300$ or their $3200 \div 300=10.6(\ldots)$ or 10.7 or $3.2 \times 1000=3200$ or $3.2 \div 300=0.0106(\ldots) \text { or } 0.0107$ or $0.0106(\ldots) \times 1000=10.6(\ldots)$ or 10.7 or $10.6(\ldots)$ or 10.7 or full method with one error, e.g. $3.2 \times 1000=320$ and $320 \div 1000=1.06(\ldots) \text { or } 1.07$
	Additional Guidance		
	Allow imprecise statements, e.g. $11 \times 300=3300 \div 1000=3.3$		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

2(a)	Alternative method 1			
	$\frac{1}{4} \times 60 \text { or } 15$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	implied by 55	
	their $15+5+35$ or 55	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$		if adding any two times seen
	8.45 - their 55 or 7.5 or their start time + their 55	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$		55 must be from 3 times start time must be between am and 8.00 am
	$7.50 \text { (am) }$ or 10 to 8 (in the morning)	$\begin{gathered} \text { A1 } \\ \text { / } \end{gathered}$		be correct time notation
	Alternative method 2			
	$\frac{1}{4} \times 60$ or 15		M1 Ra	
	8.45 - their $15-5$ or 8.25 or 8.45 - their $15-35$ or 7.55 or $8.45-5-35 \text { or } 8.05$		$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	or their start time + any two times their start time must be between 7.40 am and 8.00 am
	8.45 - their $15-5-35$ or 7.5 or their start time + their $15+5+35$		$\begin{aligned} & \mathrm{M} 1 \\ & \text { Aa } \end{aligned}$	must add or subtract 3 times their start time must be between 7.40 am and 8.00 am
	$7.50 \text { (am) }$ or 10 to 8 (in the morning)		$\begin{gathered} \text { A1 } \\ \text { / } \end{gathered}$	must be correct time notation

Q	Answer	Mark	Comments

2(a)	\quad Additional Guidance
	7.50 pm or 10 to 8 in the evening scores M1M1M1 A0
	Decimal times can score up to M3 A0 Example $\frac{1}{4} \times 60=0.15$ $0.15+0.05+0.35=0.55$ $8.45-0.55=7.9 ~ s c o r e s ~ M 1 M 1 M 1 A 0 ~$

2(b)	$382 \div 2$	$\begin{aligned} & \text { M1 } \\ & \text { Rb } \end{aligned}$	
	191	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	SC1 382 seen
Check	reverse or alternative method, e.g. their $191 \times 2=382$ or $191+191=382$ or approximation $400 \div 2=200$	$\begin{aligned} & \mathrm{B} 1 \mathrm{ft} \\ & A b \end{aligned}$	
2(b)	Additional Guidance		
	Mark holistically		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

2(c)	Alternative method 1		
	$2 \times 96 \text { or } 192$ or $2 \frac{1}{2} \times 96 \text { or } 240$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	for $2 \frac{1}{2} \times 96$ allow $96+96+48$
	192 and 240 and Yes	A2 I I	A1 192 and 240 or A1ft correct conclusion for their values must score M1
	Alternative method 2		
	$216 \div 96$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	2.25 or $2 \frac{1}{4}$ and Yes	A2 I I	A1 2.25 or $2 \frac{1}{4}$ or A1ft correct conclusion for their value must score M1
	Alternative method 3		
	$216 \div 2 \text { or } 108$ or $216 \div 2.5 \text { or } 86.4$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	108 and 86.4 and Yes	A2 I I	A1 108 and 86.4 or A1ft correct conclusion for their values must score M1

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

3(a)	one rectangle of correct length and width seen	M1 $R a$	7 cm by 1 cm
	at least 6 of their rectangles fitted in	M1 Aa	6 rectangles of the same size seen on grid
	11 rectangles of correct size shown	A1	

3(b)	$140+20+140+20$ or 320	$\begin{aligned} & 25 \times 140 \text { or } \\ & 3500 \\ & \text { or } \\ & 25 \times 20 \text { or } 500 \\ & \text { or } \\ & 25 \times 160 \text { or } \\ & 4000 \end{aligned}$	M1 $R a$	
	$25 \times$ their 320	```2 x their 3500 + 2\times their 500 or their 7000 + their }100 or 2\times their 4000```	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	their 320 must be a length
	8000 (cm)		$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	SC1 4000
	Additional Guidance			
	2nd M1 - their 320 Example $1 \quad 140 \div 20=7$ and 7×25 scores M0 (7 is not a length) Example 211×25 scores M0 (11 is the number of sashes from 3(a) and not a length) Example 32800×25 scores M0 (2800 is an area)			

\mathbf{Q}	Answer	Mark	Comments

3(c)	C13 and C14	B1 Aa	

\mathbf{Q}	Answer	Mark	Comments

4(a)	Alternative method 1		
	$10+7+9+8+6+7+7+10+9+7=80$ and $80 \div 10=8$	B2 I I	B1 $10+7+9+8+6+7+7+10+9+7=80$ or $80 \div 10=8$ or full working with one error or omission
	Alternative method 2		
	$10+7+9+8+6+7+7+10+9+7=80$ and $8 \times 10=80$	$\begin{gathered} \text { B2 } \\ \text { I } \\ \text { I } \end{gathered}$	B1 $10+7+9+8+6+7+7+10+9+7=80$ or $8 \times 10=80$ or full working with one error or omission
	Additional Guidance		
	Example 1 $10+7+9+8+6+7+7+10+9+7 \div 10=73.7 \text { scores B0 }$ Example 2 $10+7+9+8+6+7+7+10+9+7=90$ and $90 \div 10=9$ scores B1 Allow imprecise statements, e.g. $10+7+9+8+6+7+7+10+9+7=80 \div 10=8$		

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

	Alternative method 2					
4(b)	5.6(0) or 560 seen or used		$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Rb} \end{aligned}$			
	0.75×5 or 3.75	75×5 or 375	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$			
	their $3.75 \div 6$ or 0.625	$\begin{aligned} & \text { their } 375 \div 6 \text { or } \\ & 62.5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$			
	their 0.625×8 or 5 or their 5.6(0) \div their 0.625 or 8.96	their 62.5×8 or 500 or their $560 \div$ their 62.5 or 8.96	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	their 5.6(0) must be a minimum wage		
	5 (per hour) and 5.60 (per hour) and no or 8.96 (skirts per hour) and no		A2ft I I	A1 5 (per hour) and 5.60 per hour or 8.96 (skirts per hour) or A1ft correct decision for their value(s) must score at least 3 marks from B1M3		
	Additional Guidance					
	Condone incorrect use of money symbols. E.g. allow 5.00 p or $£ 5.00$ p for $£ 5(.00)$ ft other values of National Minimum Wage (can score B0 M3A2ft)					
	$\begin{aligned} & \text { NMW }=£ 4.05 \\ & 0.75 \times 5=3.75 \\ & 3.75 \div 6=0.625 \\ & 4.05 \div 0.625=6.48 \\ & 6 .(\ldots) \text { and No } \end{aligned}$		$\begin{aligned} & \mathrm{NMW}=£ 7.05 \\ & 0.75 \times 5=3.75 \\ & 3.75 \div 6=0.625 \\ & 7.05 \div 0.625=11.28 \\ & 11 .(\ldots) \text { and No } \end{aligned}$		$\begin{aligned} & \text { NMW }=£ 7.50 \\ & 0.75 \times 5=3.75 \\ & 3.75 \div 6=0.625 \\ & 7.5 \div 0.625=12 \end{aligned}$ [11.9. 12.1] and No	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

$\left.\begin{array}{|l|c|l|}\hline 8 \times 10 \times 2 \times 6 & \text { M2 } & \text { M1 any three values multiplied } \\ R a \\ A a\end{array}\right]$

Alternative method 2

4(c)

$8 \times 2 \times 6$ or 96	M1 Ra	
$1000 \div$ their 96	M1	
	Aa	
$10.41(6 \ldots)$ or 10.42 and No	A2ft	A1 10.41(6...) or 10.42
	I	or
A1ft correct decision for their value		
must score M1		

Additional Guidance

In alt 2 can multiply any 3 values and compare with the fourth

Example

$$
\begin{aligned}
& 10 \times 2 \times 6=120 \\
& 1000 \div 120=8.3(3 \ldots) \\
& \text { No }
\end{aligned}
$$

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

4(d)	Alternative method 1		
	2000×1.64 or 3280	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	$\begin{aligned} & \text { their } 3280+1900+705+1080 \\ & \text { or } \\ & 6965 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	must be all 4 costs their 3280 can be 1.64
	2000×4.99 or 9980	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
	their 9980 - their 6965 or their $6965+3000$ or 9980 - 3000 or 6980	$\begin{aligned} & \mathrm{M} 1 \\ & \text { Aa } \end{aligned}$	their 6965 must be based on at least 2 costs
	3015 and yes or 9965 and 9980 and yes or 6980 and 6965 and yes	A2 I I	A1 3015 or 9965 and 9980 or 6980 and 6965 or A1ft correct decision for their value(s) must score 1st and 4th M1 or 3rd and 4th M1

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

4(d)	Alternative method 2		
	$4.99-1.64$ or 3.35	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their 3.35×2000 or 6700	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	
	their 6700-1900-705-1080 or their 6700-3685	M2 Aa Aa	M1 their 6700 - any two costs their 6700 must be from profit per skirt
	3015 and Yes	$\begin{gathered} \text { A2 } \\ \text { l } \\ \text { l } \end{gathered}$	A1 3015 or A1ft correct decision for their value must score M1M1M1
	Additional Guidance		
	Example 1 $\begin{aligned} & 2000 \times 1.64=328 \\ & 328+1900+705+1080=4013 \\ & 2000 \times 4.99=9980 \\ & 9980-4013=5967 \\ & \text { Yes } \end{aligned}$ scores M1M1M1M1A1ft		Example 2 $\begin{aligned} & 2000 \div 1.64=1220 \\ & 1220+1900+705+1080=4905 \\ & 2000 \times 4.99=9980 \\ & 9980-4905=5075 \\ & \text { Yes } \end{aligned}$ scores M0M1M1M1A1ft
	Example 3 $\begin{aligned} & 2000 \times 1.64=3280 \\ & 2000 \times 4.99=9980 \\ & 9980-3280=6700 \\ & \text { Yes } \end{aligned}$ scores M1M0M1M0A0		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

