FUNCTIONAL SKILLS CERTIFICATE Functional Mathematics
 Level 1
 Mark Scheme

January 2017

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

Examinations are marked to award positive achievement.
Marks are awarded for demonstrating the following interrelated process skills.
Representing Selecting the mathematics and information to model a situation.
R. 1 Candidates recognise that a situation has aspects that can be represented using mathematics.
R. 2 Candidates make an initial model of a situation using suitable forms of representation.
R. 3 Candidates decide on the methods, operations and tools, including ICT, to use in a situation.
R. 4 Candidates select the mathematical information to use.

Analysing Processing and using mathematics.
A. 1 Candidates use appropriate mathematical procedures.
A. 2 Candidates examine patterns and relationships.
A. 3 Candidates change values and assumptions or adjust relationships to see the effects on answers in models.
A. 4 Candidates find results and solutions

Interpreting Interpreting and communicating the results of the analysis.
I. 1 Candidates interpret results and solutions.
I. 2 Candidates draw conclusions in light of situations.
I. 3 Candidates consider the appropriateness and accuracy of results and conclusions.
I.4 Candidates choose appropriate language and forms of presentation to communicate results and solutions.

In particular, individual marks are mapped onto the following skills standards.
Representing Making sense of the situations and representing them.
A learner can:
Ra Understand routine and non-routine problems in familiar and unfamiliar contexts and situations.

Rb Identify the situation or problems and identify the mathematical methods needed to solve them.

Rc Choose from a range of mathematics to find solutions.

Analysing Processing and using the mathematics.
A learner can:
Aa Apply a range of mathematics to find solutions.
Ab Use appropriate checking procedures and evaluate their effectiveness at each stage.

Interpreting Interpreting and communicating the results of the analysis. A learner can:

Ia Interpret and communicate solutions to multistage practical problems in familiar and unfamiliar contexts and situations.
lb Draw conclusions and provide mathematical justifications.

To facilitate marking, the following categories are used:
M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

\mathbf{Q}	Answer	Mark	Comments

1(a)	1000 g	B1	
		Aa	
	Additional Guidance		

1(b)	$1(+) 48 \div 24$ or $1(+) 2$	M1 Ra	
	3	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	SC1 ingredients for 3 batches with up to 2 errors 600 g margarine 750 g flour 300 g sugar 6 eggs 3 teaspoons baking powder
	Additional Guidance		

1(c)	their 3×2 or their 6	$1+2 \times$ their 2	M1 $R b$	
	5		A1ft Aa	ft their 3 or their 2 from (b)
	Additional Guidance			

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

$32 \div 16=2$ and $72 \div 24=3$	B2	B1 $32 \div 16=2$ and $72 \div 24=3$
and	Aa	or
$5 \times 1.92=9.6(0)$ or $9.6(0) \div 1.92=5$	I	$5 \times 1.92=9.6(0)$ or $9.6(0) \div 1.92=5$

Alternative method 2
$32 \div 16=2$ and $72 \div 24=3$
and
$2 \times 1.92=3.84$ and $3 \times 1.92=5.76$
and
$3.84+5.76=9.6(0)$

```
B1 }32\div16=2\mathrm{ and 72 }\div24=
        or
            2\times1.92=3.84 and 3 x 1.92=5.76
or
                                3.84+5.76 = 9.6(0)
```

Additional Guidance
Alternative method 2, e.g.
$32 \div 16 \times 1.92=3.84$ and $72 \div 24 \times 1.92=5.76$ $3.84+5.76=9.6(0)$

| Q Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |

1 (e)	Alternative method 1		
	$32 \div 4$ or 8 bags of large cookies or $72 \div 12$ or 6 bags of small cookies	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their 8×1.15 or 9.20 their 6×2.60 or 15.60	M1 Rc M1 Rc	their 8 or their $6 \neq 4,12,32$ or 72 M1 their 6×1.15 or 6.90 and their 8×2.60 or 20.80
	their 9.20 + their 15.60 or 24.80	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	not $1.15+2.6$ (0)
	their $24.80-9.60$ or $15+9.60$ or their 24.80-15	$\begin{aligned} & \mathrm{M} 1 \\ & \text { Aa } \end{aligned}$	
	15.2(0) and Yes or 24.6(0) and 24.8(0) and Yes or 9.8(0) and 9.6(0) and Yes	A2 I I	A1 15.2(0) or 24.6(0) and 24.8(0) or 9.8(0) and 9.6(0) or A1ft correct conclusion for their values Must see 4th and 5th M1 for their income > 15 or 4th M1 for their income < 15

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

1(e)	Alternative method 2		
	$32 \div 4$ or 8 bags of large cookies or $72 \div 12$ or 6 bags of small cookies	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	$1.92 \div 4 \text { or } 0.48$ or $1.92 \div 2 \text { or } 0.96$	$\begin{aligned} & \mathrm{M} 1 \\ & R C \end{aligned}$	
	$\begin{aligned} & 1.15 \text { - their } 0.48 \text { or } 0.67 \\ & \text { or } \\ & 2.6(0) \text { - their } 0.96 \text { or } 1.64 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	
	their $8 \times$ their 0.67 or 5.36 and their $6 \times$ their 1.64 or 9.84	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
	their 5.36 + their 9.84	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
	15.2(0) and Yes	A2 I I	A1 15.2(0) or A1ft correct conclusion for their values must score 4th and 5th M1
	Additional guidance		
	24.8(0) scores M4 Total income < 15 and No can sco $32 \div 12$ and $72 \div 4$ (1st M1 with 12	1 ft swap	can score M0M1M1M1M1A1ft

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

2(a)	100 used or seen	$\begin{aligned} & \text { B1 } \\ & \text { Rb } \end{aligned}$	
	their $100+140$	$\begin{aligned} & \text { M1 } \\ & \text { Rc } \end{aligned}$	their 100 can be 10, 25, 120 and 140
	$£ 240$	A1ft I	Must see $£$ symbol (allow 240 pounds) SC2 £150, £165, £260 or £280 SC1 150, 165, 260, 280 SC1 £200
Check	Reverse calculation or alternative method, e.g. $240-140=100$ or $240-100=140$	$\begin{gathered} \mathrm{B} 1 \mathrm{ft} \\ A b \end{gathered}$	
2(a)	Additional Guidance		
	Check Must see initial method to award checking mark for reverse or alternative method If method not shown in main body mark if seen in checking space Mark check in main body if not seen in checking space Allow, e.g., $140+140=280$ as an alternative to $2 \times 140=280$ Allow $£$ sign in check if not seen in main body		

2(b)	75 (mpg)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Aa} \end{aligned}$	
	Additional Guidance		

Q	Answer	Mark	Comments

2(c)	Alternative method 1		
	60×5 or 300	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	total miles per week
	their $300 \div$ their 75 or 4	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	Step 1 their $300 \neq 75$ or 83 their 75 can be 83 or their 75 from 2(b)
	their $4 \times 4.9(0)$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	Step 2
	(£)19(.60) and Yes	A2ft I I	ft their 75 from 2(b) A1ft (£)19(.60) or A1ft correct conclusion for their ($£$)19(.60) must score M3
	Alternative method		
	$60 \div 75$ or 0.8	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	0.8×4.9 or 3.92	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	
	3.92×5	$\begin{aligned} & \mathrm{M} 1 \\ & \text { Aa } \end{aligned}$	
	(£)19(.60) and Yes	A2ft I I	ft their 75 from 2(b) A1ft (£)19(.60) or A1ft correct conclusion for their ($£$)19(.60) must score M3

2(c)	Additional Guidance
	If their $75=83$ can score M3A1ft unless in 2(b) their $75=83$ If their 75 is from 2(b) can score M3A2ft $\times 5$, \div their 75 and $\times 4.9$ can be done in any order, e.g.

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

```57+42 or 99(min) or 1 (h) 39 (min) and 46 + 52 or 98 (min) or 1 (h) 38 (min) and 51 + 54 or 105 (min) or 1 (h) 45 (min) and 40+46 or 86 (min) or 1 (h) 26 (min) and 44+58 or 102 (min) or 1 (h) 42 (min)```	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	allow one error
their 4 days (out of 5 ) $>1 \frac{1}{2}$ hours or their 1 day (out of 5 ) $<1 \frac{1}{2}$ hours or all their days except their Thursday $>1 \frac{1}{2}$ hours	M1 I	$>1 \frac{1}{2}$ hours or $<1 \frac{1}{2}$ hours can be implied   e.g. one day the train takes longer on Thursday it is quicker by car on Thursday it is 4 min quicker by car
Yes	A1	must score M2 with no errors SC1 ( $1 \frac{1}{2}$ hours =) 90 min or 1 h 30 min

## Alternative method 2

$57+42+46+52+51+54+40+46$   $+44+58$   or   $99+98+105+86+102$   or   $490(\mathrm{~min})$		allow one error
their $490 \div 5$	Aa	
Yes and $98(\mathrm{~min})$ or $1(\mathrm{~h}) 38(\mathrm{~min})$	A 1	SC1 $\left(1 \frac{1}{2}\right.$ hours $\left.=\right) 90$ min or 1 h 30 min


$\mathbf{Q}$	Answer	Mark	Comments


2(d)	Alternative method 3		
	$\begin{aligned} & 57+42+46+52+51+54+40+46 \\ & +44+58 \end{aligned}$   or $99+98+105+86+102$   or $490 \text { (min) }$   or $8(\mathrm{~h}) 10(\mathrm{~min})$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	allow one error
	$1 \frac{1}{2} \times 5$ or $7 \frac{1}{2}(\mathrm{~h})$ or $450(\mathrm{~min})$	$\begin{gathered} \text { M1 } \\ \text {, } \end{gathered}$	
	Yes and $8(\mathrm{~h}) 10(\mathrm{~min})$ and $7 \frac{1}{2}(\mathrm{~h})$ or Yes and 490 (min) and 450 (min)	$\begin{gathered} \text { A1 } \\ \text { / } \end{gathered}$	SC1 ( $1 \frac{1}{2}$ hours =) 90 min or 1 h 30 min


2(d)	Additional Guidance
	For $1(\mathrm{~h}) 39(\mathrm{~min})$ allow $1.39(\mathrm{~h})$ or $1: 39(\mathrm{~h})$   Beware!   There are two ways of obtaining $98(\mathrm{~min})$ or $1(\mathrm{~h}) 38(\mathrm{~min})-46+52$ and $490 \div 5$


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |



$\mathbf{Q}$	Answer	Mark	Comments

Alternative method 1

$180 \times 20$ or 3600	$\begin{aligned} & \mathrm{M} 1 \\ & R b \end{aligned}$	
$8 \mathrm{am} \rightarrow 3 \mathrm{pm}=7$ hours	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	implied by 6 seen
their $7 \times 60$ or 420	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	
```their 3600 % (their 420-60) or their 3600 \div their 360```	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	their 420 - 60 can be 420
10	$\begin{gathered} \mathrm{A} 1 \\ \text { l } \end{gathered}$	
Alternative method 2		
$(8 \mathrm{am} \rightarrow 3 \mathrm{pm})=7(\mathrm{~h})$	$\begin{aligned} & \mathrm{M} 1 \\ & R b \end{aligned}$	implied by 6 seen
(their $7-1$) $\times 60$ or 360 or their 6×60 or 360	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	their 7-1 can be 7
their $360 \div 20$ or 18	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	their 18 can be 21 their $360 \neq 180$
$180 \div$ their 18	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
10	$\begin{gathered} \mathrm{A} 1 \\ \text { I } \end{gathered}$	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 3

180×20 or 3600	M 1	
	$R b$	
their $3600 \div 60$ or 60	M 1	
	Aa	
$8 \mathrm{am} \rightarrow 3 \mathrm{pm}=7$ (h)	M 1	implied by 6 seen
	$R c$	
their $60 \div$ (their $7-1$)	M1	their $7-1$ can be 7
or	Aa	
their $60 \div 6$	A1	
10	I	

3(b)
Alternative method 4

$60 \div 20$ or 3			3 rooms per hour per cleaner	
		Rb		
$8 \mathrm{am} \rightarrow 3 \mathrm{pm}=7(\mathrm{~h})$		M1	implied by 6 seen	
$\begin{aligned} & \text { (their } 7-1) \times 3 \\ & \text { or } \\ & \text { their } 6 \times 3 \\ & \text { or } \\ & 18 \end{aligned}$	$\begin{aligned} & 180 \div(\text { their } 7-1) \\ & \text { or } \\ & 180 \div \text { their } 6 \\ & \text { or } \\ & 30 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	$180 \div$ their 3 or 60	their $7-1$ can be 7
$180 \div$ their 18	their $30 \div$ their 3	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	their $60 \div$ (their $7-1$)	their 18 can be 21
10		$\begin{gathered} \mathrm{A} 1 \\ \text { l } \end{gathered}$		

3(b)	Additional Guidance	
	Missing the 1-hour break This can score M4 max e.g. Using Alternative method 1 $\begin{aligned} & 180 \times 20=3600 \\ & 3600 \div 420=8.57 \end{aligned}$ 9 cleaners Using Alternative method 4 3 rooms per hour $\begin{aligned} & (8 \mathrm{am} \rightarrow 3 \mathrm{pm})=7(\mathrm{~h}) \\ & 7 \times 3=21 \\ & 180 \div 21=8.57 \\ & 9 \text { cleaners } \end{aligned}$	M1 M1M1M1 AO M1 M1 M1 M1 A0
	18 or 21 usually score M3	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

3(c)	Alternative method 1			
	$4+3+1+4+2+1+3+3+2+1=24$ and $24 \div 10=2.4$	$\begin{gathered} \text { B2 } \\ \text { I } \\ \text { I } \end{gathered}$		$4+3+1+4+2+1+3+3+2+1=24$ or $24 \div 10=2.4$
	Alternative method 2			
	$4+3+1+4+2+1+3+3+2+1=24$ and $2.4 \times 10=24$	$\begin{gathered} \text { B2 } \\ \text { I } \\ \text { I } \end{gathered}$		$4+3+1+4+2+1+3+3+2+1=24$ or $2.4 \times 10=24$
	Additional Guidance			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

$\begin{aligned} & 3000 \times 2.4 \text { or } \\ & 7200 \end{aligned}$	$3000 \div 120$ or 25	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \text { Allow } \times 2.4, \div 120 \text { and } \times 6 \text { in any order, e.g. } \\ & 3000 \times 6 \text { or } 18000 \end{aligned}$
their $7200 \div 120$ or 60	25×2.4 or 60	$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	$\begin{aligned} & 18000 \div 120 \text { or } 150 \\ & 150 \times 2.4 \text { or } 360 \end{aligned}$
their 60×6		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	
Yes and (£)360		A2 1 1	A1 (£) 360 or A1ft correct conclusion for their ($£$) 360 must $\times 2.4$ (or 2 or 3 if rounded)

Alternative method 2

3000×2.4 or 7200	M 1	
$R c$		
their $7200 \div 120$ or 60	M 1	
$R c$		
$350 \div 6$	M1	
or	Aa	
58.3	A2	A1 60 and $58(.3 \ldots)$
Yes and 60 and $58(.3 \ldots)$	or	
		A1ft correct conclusion for their values

3 3(d)	Additional Guidance	
	Rounding 2.4 can score MOM1M1A1ft max	
	In alternative method 1	$2.4 \rightarrow 2$ gives No and 300
	$2.4 \rightarrow 3$ gives Yes and 450	
	In alternative method 2	$2.4 \rightarrow 2$ gives No and 50 and 58(.3...)
	$2.4 \rightarrow 3$ gives Yes and 75 and 58(.3...)	

\mathbf{Q}	Answer	Mark	Comments

4(a)	Side of box rectangle drawn with width 10 cm and height at least 15.2 cm	B2 Rb Aa		Rectangle drawn with width 10 cm or height at least 15.2 cm
	Window Rectangle drawn with dimensions 6 cm by 4 cm and a vertical line of symmetry within their side of box and a horizontal line of symmetry within their side of box	B2ft Ra Aa	B1ft	Rectangle drawn with dimensions 6 cm by 4 cm or a vertical line of symmetry within their side of box or a horizontal line of symmetry within their side of box
	Additional Guidance			
	For the side of box allow B1 for a length clearly $>15 \mathrm{~cm}$ Award B1ft for any size window with a vertical and/or horizontal line of symmetry within the side Allow any length of 10 cm (horizontal or vertical) for the width of the side of the box If a width and a length are drawn allow the outside of the grid to complete the sides of the box			

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4(b)	Alternative method 1			
	$6 \times 45 \text { or } 270$ or $5 \times 71 \text { or } 355$		$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	$6 \times 45 \text { or } 270$ and $5 \times 71 \text { or } 355$		$\begin{aligned} & \text { M1 } \\ & R c \end{aligned}$	
	their 270 + their 355		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Aa} \end{aligned}$	must add 2 values (can be $45+71$)
	625 and No		A2 1 I	A1 625 or A1ft correct conclusion for their 625 must score 1st and 3rd M1
	Alternative method 2			
	6×45 or 270	5×71 or 355	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	$\begin{aligned} & 600 \text { - their } 270 \\ & \text { or } 330 \end{aligned}$	$\begin{aligned} & 600 \text { - their } 355 \\ & \text { or } 245 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Rc} \end{aligned}$	
	their $330 \div 71$	their $245 \div 45$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	[4.6, 4.7] and No	$5.4 \ldots$ and No	A2 I I	A1 [4.6, 4.7] or $5.4 \ldots$ or A1ft correct conclusion for their value must score 1st and 3rd M1
	Additional Guidance			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

4(c)	Alternative method 1		
	$270 \div 50$	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	5.4	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	or $5 \frac{2}{5}$ or 5 remainder 20
	6	A1ft I	ft their 5.4 rounded up to the nearest whole number
	Alternative method 2		
	attempts to add at least four 50's	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	adds five 50 's to give 250 and adds six 50 's to give 300	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Aa} \end{aligned}$	
	6	A1ft I	
Check	reverse calculation e.g. $270 \div 5=54$ and $270 \div 6=45$ or alternative method e.g. $5 \times 50=250$ and $6 \times 50=300$	$\begin{aligned} & \mathrm{B} 1 \\ & A b \end{aligned}$	
4(c)	Additional Guidance		
	A1ft in Alternative method 2 $\begin{aligned} & 4 \times 50=250 \\ & 5 \times 50=300 \end{aligned}$ 5 boxes		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4(d)	28×9 or 252	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their $252 \div 5$ or 50.4	$\begin{aligned} & \text { M1 } \\ & \text { Ra } \end{aligned}$	
	their $50.4+32$	$\begin{aligned} & \text { M1 } \\ & \text { Aa } \end{aligned}$	
	82(.4) and Yes	$\begin{gathered} \text { A2 } \\ \text { I } \\ \text { I } \end{gathered}$	A1 82(.4) or A1ft correct conclusion for their 82(.4) must score M2
	Additional Guidance		
	Using 85 instead of 28 can score M0M1M1A1ft		

