1(a)	Interest L1 Mark Scheme	
	100×1.05 (= 105)	[1]
	£105	[1]
1(b)	1000×1.05 ($=1050$)	[1]
	£1050	[1]
1(c)	20×1.05 (= 21)	[1]
	£21	[1]
1(d)	34×1.05 (= 35.7)	[1]
	£35.70	[1]
1(e)	1.6×1.05 ($=1.68$)	[1]
	£1.68	[1]
1(f)	224×1.05 ($=235.2$)	[1]
	£235.20	[1]
1(g)	108×1.05 (= 113.4)	[1]
	$£ 113.40$	[1]
1(h)	48.4×1.05 ($=50.82$)	[1]
	$£ 50.82$	[1]
1(i)	50×1.05 ($=52.5$)	[1]
	$£ 52.50$	[1]
1(j)	$665.8 \times 1.05(=699.09)$	[1]
	£699.09	[1]
2(a)	$8000 \times 0.15=£ 1200$ interest	[1]
	$8000+1200=£ 9200$ balance	[1]
2(b)	$8000 \times 0.1=£ 800$ interest	[1]
	$8000+800=£ 8800$ balance	[1]
2(c)	$8000 \times 0.05=£ 400$ interest	[1]
	$8000+400=£ 8400$ balance	[1]

3(a)	$100 \times 1.1(=110)$	[1]
	$£ 110$	[1]
3(b)	$15000 \times 1.05(=15750)$	[1]
	$£ 15750$	[1]
3(c)	$50 \times 1.15(=57.5)$	[1]
	$£ 57.50$	[1]
3(d)	$350 \times 1.2(=420)$	[1]
	$£ 420$	[1]
3(e)	$31 \times 1.3(=40.3)$	[1]
	$£ 40.30$	[1]
3(f)	$116 \times 1.5(=174)$	[1]
	$£ 174$	[1]
3(g)	$25.5 \times 1.4(=35.7)$	[1]
	$£ 35.70$	[1]
3(h)	16384×1.25 (= 20480)	[1]
	£20480	[1]
3(i)	$65 \times 2.1(=136.5)$	[1]
	$£ 136.50$	[1]
3(j)	998.50×1.6 (= 1597.6)	[1]
	$£ 1597.60$	[1]

4(a)	$1000 \times 0.15=£ 150$ interest	$[1]$
	$1000+150=£ 1150$ balance	$[1]$
4(b)	$4000 \times 0.1=£ 400$ interest	$[1]$
4(c)	$7000+400=£ 4400$ balance	$[1]$
	$750 \times 0.2=£ 150$ interest	$[150=£ 900$ balance
4(d)	$10000 \times 0.05=£ 500$ interest	$[1]$
	$10000+500=£ 10500$ balance	$\left[\begin{array}{l}\text { (1] }\end{array}\right.$

5(a)	A: $10000 \times 1.05=£ 10500$	[1]
	B: $9900 \times 1.1=£ 10890$	[1]
	C: $9810 \times 1.25=£ 12262.50$	[1]
	C produces the most.	[1]
5(b)	A: $15000 \times 1.2=£ 18000$	[1]
	B: $18000 \times 1.1=£ 19800$	[1]
	C: $13000 \times 1.15=£ 14950$	[1]
	B produces the most.	[1]
5(c)	A: $100 \times 1.3=£ 130$	[1]
	B: $130 \times 1.1=£ 143$	[1]
	C: $115 \times 1.25=£ 143.75$	[1]
	C produces the most.	[1]
5(d)	A: $199 \times 1.35=£ 268.65$	[1]
	B: $249 \times 1.2=£ 298.80$	[1]
	C: $149 \times 1.45=£ 216.05$	[1]
	B produces the most.	[1]
5(e)	A: $10.4 \times 1.25=£ 13$	[1]
	B: $10 \times 1.55=£ 15.50$	[1]
	C: $11 \times 1.15=£ 12.65$	[1]
	B produces the most.	[1]
6(a)	$15000 \times 0.1=£ 1500$	[1]
	$15000+1500=£ 16500$	[1]
6(b)	$9000 \times 0.15=£ 1350$	[1]
	$9000+1350=£ 10350$	[1]
6(c)	$10000 \times 0.25=£ 2500$	[1]
	$10000+2500=£ 12500$	[1]
6(d)	Chloe earns the most interest, Alice has the most money at the end.	[1]

$\mathbf{7}$	A: $15000 \times 1.05=£ 15750$	$[1]$
	B: $14500 \times 1.15=£ 16675$	$[1]$
	C: $(15000+450) \times 1.1=£ 16995$	$[1]$
	C will give the most money.	$[1]$

